Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 4217, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30310066

RESUMO

Plasma membrane tension regulates many key cellular processes. It is modulated by, and can modulate, membrane trafficking. However, the cellular pathway(s) involved in this interplay is poorly understood. Here we find that, among a number of endocytic processes operating simultaneously at the cell surface, a dynamin independent pathway, the CLIC/GEEC (CG) pathway, is rapidly and specifically upregulated upon a sudden reduction of tension. Moreover, inhibition (activation) of the CG pathway results in lower (higher) membrane tension. However, alteration in membrane tension does not directly modulate CG endocytosis. This requires vinculin, a mechano-transducer recruited to focal adhesion in adherent cells. Vinculin acts by controlling the levels of a key regulator of the CG pathway, GBF1, at the plasma membrane. Thus, the CG pathway directly regulates membrane tension and is in turn controlled via a mechano-chemical feedback inhibition, potentially leading to homeostatic regulation of membrane tension in adherent cells.


Assuntos
Membrana Celular/metabolismo , Dinaminas/metabolismo , Endocitose , Retroalimentação Fisiológica , Mecanotransdução Celular , Animais , Fenômenos Biomecânicos , Adesão Celular , Camundongos , Transdução de Sinais , Temperatura , Vinculina/metabolismo
2.
J Cell Biol ; 216(9): 2959-2977, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28687667

RESUMO

Cell migration is dependent on adhesion dynamics and actin cytoskeleton remodeling at the leading edge. These events may be physically constrained by the plasma membrane. Here, we show that the mechanical signal produced by an increase in plasma membrane tension triggers the positioning of new rows of adhesions at the leading edge. During protrusion, as membrane tension increases, velocity slows, and the lamellipodium buckles upward in a myosin II-independent manner. The buckling occurs between the front of the lamellipodium, where nascent adhesions are positioned in rows, and the base of the lamellipodium, where a vinculin-dependent clutch couples actin to previously positioned adhesions. As membrane tension decreases, protrusion resumes and buckling disappears, until the next cycle. We propose that the mechanical signal of membrane tension exerts upstream control in mechanotransduction by periodically compressing and relaxing the lamellipodium, leading to the positioning of adhesions at the leading edge of cells.


Assuntos
Adesão Celular , Membrana Celular/fisiologia , Movimento Celular , Citoesqueleto/fisiologia , Fibroblastos/fisiologia , Mecanotransdução Celular , Pseudópodes/fisiologia , Actinas/genética , Actinas/metabolismo , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Membrana Celular/metabolismo , Forma Celular , Células Cultivadas , Simulação por Computador , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Microscopia de Fluorescência , Microscopia de Vídeo , Modelos Biológicos , Miosina Tipo II/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Pseudópodes/metabolismo , Estresse Mecânico , Fatores de Tempo , Transfecção , Vinculina/metabolismo
3.
Nat Commun ; 6: 7292, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26073653

RESUMO

Biological processes in any physiological environment involve changes in cell shape, which must be accommodated by their physical envelope--the bilayer membrane. However, the fundamental biophysical principles by which the cell membrane allows for and responds to shape changes remain unclear. Here we show that the 3D remodelling of the membrane in response to a broad diversity of physiological perturbations can be explained by a purely mechanical process. This process is passive, local, almost instantaneous, before any active remodelling and generates different types of membrane invaginations that can repeatedly store and release large fractions of the cell membrane. We further demonstrate that the shape of those invaginations is determined by the minimum elastic and adhesive energy required to store both membrane area and liquid volume at the cell-substrate interface. Once formed, cells reabsorb the invaginations through an active process with duration of the order of minutes.


Assuntos
Adaptação Fisiológica/fisiologia , Membrana Celular/fisiologia , Fibroblastos/fisiologia , Animais , Forma Celular , Tamanho Celular , Elasticidade , Camundongos , Modelos Biológicos , Modelos Teóricos , Concentração Osmolar , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa