RESUMO
Studies with sarcolemma from cattle myometrium containing inside-out cytoplasmic vesicles, using Ca2+-EGTA buffer, showed that the affinity of ionized Ca2+ for the Mg2+- or ATP-dependent transport is higher than that for the Na+-Ca2+ exchange system (Kd = 3,2 X 10(-6) and (4.3-5.3) X 10(-5) M), respectively. The Km values for MgATP are 2.15 mM. Oxytocin added to the homogenization medium containing rabbit and cattle myometrium cells, i.e. during the formation of closed sarcolemmal fragments, resulted in inhibition of Mg2+, ATP-dependent accumulation of 45Ca2+ by plasma membranes. However, an addition of oxytocin to the incubation medium did not affect the kinetics of active accumulation of Ca2+. It was assumed that the system of non-electrogenic Na+-Ca2+ exchange in the myometrium possessing a low affinity for Ca2+ provides for the maintenance of ionized Ca2+ concentration in the myocytes at 10(-5) M. Therefore, this system cannot induce relaxation of mechanical tension of the uterus. Further decrease of Ca2+ in the myoplasm from 10(-5) to 10(-7) M and, correspondingly, the relaxation of myometrium is provided for by the Mg2+, ATP-dependent efflux of Ca2+ from the myocytes having a high affinity for this cation. The decrease of the activity of ATP-dependent Ca2+-pump by oxytocin is the cause of Ca2+ elevation in the myoplasm and, consequently, of myometrium contraction.