Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Alzheimers Dement ; 20(6): 4002-4019, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38683905

RESUMO

INTRODUCTION: Previous approaches pursuing in vivo staging of tau pathology in Alzheimer's disease (AD) have typically relied on neuropathologically defined criteria. In using predefined systems, these studies may miss spatial deposition patterns which are informative of disease progression. METHODS: We selected discovery (n = 418) and replication (n = 132) cohorts with flortaucipir imaging. Non-negative matrix factorization (NMF) was applied to learn tau covariance patterns and develop a tau staging system. Flortaucipir components were also validated by comparison with amyloid burden, gray matter loss, and the expression of AD-related genes. RESULTS: We found eight flortaucipir covariance patterns which were reproducible and overlapped with relevant gene expression maps. Tau stages were associated with AD severity as indexed by dementia status and neuropsychological performance. Comparisons of flortaucipir uptake with amyloid and atrophy also supported our model of tau progression. DISCUSSION: Data-driven decomposition of flortaucipir uptake provides a novel framework for tau staging which complements existing systems. HIGHLIGHTS: NMF reveals patterns of tau deposition in AD. Data-driven staging of flortaucipir tracks AD severity. Learned flortaucipir patterns overlap with AD-related gene expression.


Assuntos
Doença de Alzheimer , Carbolinas , Proteínas tau , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Humanos , Carbolinas/farmacocinética , Feminino , Masculino , Idoso , Proteínas tau/metabolismo , Tomografia por Emissão de Pósitrons , Progressão da Doença , Encéfalo/patologia , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Idoso de 80 Anos ou mais
2.
Mol Psychiatry ; 25(11): 2818-2831, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31358905

RESUMO

22q11.2 deletion syndrome (22q11DS)-a neurodevelopmental condition caused by a hemizygous deletion on chromosome 22-is associated with an elevated risk of psychosis and other developmental brain disorders. Prior single-site diffusion magnetic resonance imaging (dMRI) studies have reported altered white matter (WM) microstructure in 22q11DS, but small samples and variable methods have led to contradictory results. Here we present the largest study ever conducted of dMRI-derived measures of WM microstructure in 22q11DS (334 22q11.2 deletion carriers and 260 healthy age- and sex-matched controls; age range 6-52 years). Using harmonization protocols developed by the ENIGMA-DTI working group, we identified widespread reductions in mean, axial and radial diffusivities in 22q11DS, most pronounced in regions with major cortico-cortical and cortico-thalamic fibers: the corona radiata, corpus callosum, superior longitudinal fasciculus, posterior thalamic radiations, and sagittal stratum (Cohen's d's ranging from -0.9 to -1.3). Only the posterior limb of the internal capsule (IC), comprised primarily of corticofugal fibers, showed higher axial diffusivity in 22q11DS. 22q11DS patients showed higher mean fractional anisotropy (FA) in callosal and projection fibers (IC and corona radiata) relative to controls, but lower FA than controls in regions with predominantly association fibers. Psychotic illness in 22q11DS was associated with more substantial diffusivity reductions in multiple regions. Overall, these findings indicate large effects of the 22q11.2 deletion on WM microstructure, especially in major cortico-cortical connections. Taken together with findings from animal models, this pattern of abnormalities may reflect disrupted neurogenesis of projection neurons in outer cortical layers.


Assuntos
Síndrome de DiGeorge/diagnóstico por imagem , Síndrome de DiGeorge/patologia , Imagem de Difusão por Ressonância Magnética , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adolescente , Adulto , Anisotropia , Criança , Síndrome de DiGeorge/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
Neuroimage ; 206: 116327, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31682983

RESUMO

White matter hyperintensities (WMHs) are brain white matter lesions that are hyperintense on fluid attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) scans. Larger WMH volumes have been associated with Alzheimer's disease (AD) and with cognitive decline. However, the relationship between WMH volumes and cross-sectional cognitive measures has been inconsistent. We hypothesize that this inconsistency may arise from 1) the presence of AD-specific neuropathology that may obscure any WMH effects on cognition, and 2) varying criteria for creating a WMH segmentation. Manual and automated programs are typically used to determine segmentation boundaries, but criteria for those boundaries can differ. It remains unclear whether WMH volumes are associated with cognitive deficits, and which segmentation criteria influence the relationships between WMH volumes and clinical outcomes. In a sample of 260 non-demented participants (ages 55-90, 141 males, 119 females) from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we compared the performance of five WMH segmentation methods, by relating the WMH volumes derived using each method to both clinical diagnosis and composite measures of executive function and memory. To separate WMH effects on cognition from effects related to AD-specific processes, we performed analyses separately in people with and without abnormal cerebrospinal fluid amyloid levels. WMH volume estimates that excluded more diffuse, lower-intensity lesions were more strongly correlated with clinical diagnosis and cognitive performance, and only in those without abnormal amyloid levels. These findings may inform best practices for WMH segmentation, and suggest that AD neuropathology may mask WMH effects on clinical diagnosis and cognition.


Assuntos
Cognição , Disfunção Cognitiva/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Substância Branca/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Substitutos Ósseos , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
4.
medRxiv ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38947044

RESUMO

Background: Differences in amyloid positron emission tomography (PET) radiotracer pharmacokinetics and binding properties lead to discrepancies in amyloid-ß uptake estimates. Harmonization of tracer-specific biases is crucial for optimal performance of downstream tasks. Here, we investigated the efficacy of ComBat, a data-driven harmonization model, for reducing tracer-specific biases in regional amyloid PET measurements from [18F]-florbetapir (FBP) and [11C]-Pittsburgh Compound-B (PiB). Methods: One-hundred-thirteen head-to-head FBP-PiB scan pairs, scanned from the same subject within ninety days, were selected from the Open Access Series of Imaging Studies 3 (OASIS-3) dataset. The Centiloid scale, ComBat with no covariates, ComBat with biological covariates, and GAM-ComBat with biological covariates were used to harmonize both global and regional amyloid standardized uptake value ratios (SUVR). Intraclass correlation coefficient (ICC) and mean standardized absolute error (MsAE) were computed to measure the absolute agreement between tracers. Additionally, longitudinal amyloid SUVRs from an anti-amyloid drug trial were simulated using linear mixed effects modeling. Differences in rates-of-change between simulated treatment and placebo groups were tested, and change in statistical power/Type-I error after harmonization was quantified. Results: In the head-to-head tracer comparison, the best ICC and MsAE were achieved after harmonizing with ComBat with no covariates for the global summary SUVR. ComBat with no covariates also performed the best in harmonizing regional SUVRs. In the clinical trial simulation, harmonization with both Centiloid and ComBat increased statistical power of detecting true rate-of-change differences between groups and decreased false discovery rate in the absence of a treatment effect. The greatest benefit of harmonization was observed when groups exhibited differing FPB-to-PiB proportions. Conclusions: ComBat outperformed the Centiloid scale in harmonizing both global and regional amyloid estimates. Additionally, ComBat improved the detection of rate-of-change differences between clinical trial groups. Our findings suggest that ComBat is a viable alternative to Centiloid for harmonizing regional amyloid PET analyses.

5.
bioRxiv ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37662280

RESUMO

Background and Objectives: Previous approaches pursuing normative modelling for analyzing heterogeneity in Alzheimer's Disease (AD) have relied on a single neuroimaging modality. However, AD is a multi-faceted disorder, with each modality providing unique and complementary info about AD. In this study, we used a deep-learning based multimodal normative model to assess the heterogeneity in regional brain patterns for ATN (amyloid-tau-neurodegeneration) biomarkers. Methods: We selected discovery (n = 665) and replication (n = 430) cohorts with simultaneous availability of ATN biomarkers: Florbetapir amyloid, Flortaucipir tau and T1-weighted MRI (magnetic resonance imaging) imaging. A multimodal variational autoencoder (conditioned on age and sex) was used as a normative model to learn the multimodal regional brain patterns of a cognitively unimpaired (CU) control group. The trained model was applied on individuals on the ADS (AD Spectrum) to estimate their deviations (Z-scores) from the normative distribution, resulting in a Z-score regional deviation map per ADS individual per modality. Regions with Z-scores < -1.96 for MRI and Z-scores > 1.96 for amyloid and tau were labelled as outliers. Hamming distance was used to quantify the dissimilarity between individual based on their outlier deviations across each modality. We also calculated a disease severity index (DSI) for each ADS individual which was estimated by averaging the deviations across all outlier regions corresponding to each modality. Results: ADS individuals with moderate or severe dementia showed higher proportion of regional outliers for each modality as well as more dissimilarity in modality-specific regional outlier patterns compared to ADS individuals with early or mild dementia. DSI was associated with the progressive stages of dementia, (ii) showed significant associations with neuropsychological composite scores and (iii) related to the longitudinal risk of CDR progression. Findings were reproducible in both discovery and replication cohorts. Discussion: Our is the first study to examine the heterogeneity in AD through the lens of multiple neuroimaging modalities (ATN), based on distinct or overlapping patterns of regional outlier deviations. Regional MRI and tau outliers were more heterogenous than regional amyloid outliers. DSI has the potential to be an individual patient metric of neurodegeneration that can help in clinical decision making and monitoring patient response for anti-amyloid treatments.

6.
ArXiv ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39010871

RESUMO

INTRODUCTION: Previous studies have applied normative modeling on a single neuroimaging modality to investigate Alzheimer Disease (AD) heterogeneity. We employed a deep learning-based multimodal normative framework to analyze individual-level variation across ATN (amyloid-tau-neurodegeneration) imaging biomarkers. METHODS: We selected cross-sectional discovery (n = 665) and replication cohorts (n = 430) with available T1-weighted MRI, amyloid and tau PET. Normative modeling estimated individual-level abnormal deviations in amyloid-positive individuals compared to amyloid-negative controls. Regional abnormality patterns were mapped at different clinical group levels to assess intra-group heterogeneity. An individual-level disease severity index (DSI) was calculated using both the spatial extent and magnitude of abnormal deviations across ATN. RESULTS: Greater intra-group heterogeneity in ATN abnormality patterns was observed in more severe clinical stages of AD. Higher DSI was associated with worse cognitive function and increased risk of disease progression. DISCUSSION: Subject-specific abnormality maps across ATN reveal the heterogeneous impact of AD on the brain.

7.
medRxiv ; 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38116031

RESUMO

In disorders of cognitive impairment, such as Alzheimer's disease, neurodegeneration is the final common pathway of disease progression. Modulating, reversing, or preventing disease progression is a clinical imperative most likely to succeed following accurate and explanatory understanding of neurodegeneration, requiring enhanced consistency with quantitative measurements and expanded interpretability of complex data. The on-going study of neurodegeneration has robustly demonstrated the advantages of accumulating large amounts of clinical data that include neuroimaging, motiving multi-center studies such as the Alzheimer's Disease Neuroimaging Initiative (ADNI). Demonstrative advantages also arise from highly multivariate analysis methods, and this work reports advances provided by non-negative matrix factorization (NMF). NMF revealed patterns of covariance for glucose metabolism, estimated by positron emission tomography of [ 18 F]fluorodeoxyglucose, in 243 healthy normal participants of ADNI. Patterns for glucose metabolism provided cross-sectional inferences for 860 total participants of ADNI with and without cerebral amyloidosis and clinical dementia ratings (CDR) ranging 0-3. Patterns for glucose metabolism were distinct in number and topography from patterns identified in previous studies of structural MRI. They were also distinct from well-establish topographies of resting-state neuronal networks mapped by functional magnetic resonance imaging. Patterns for glucose metabolism identified significant topographical landmarks relating age, sex, APOE ε4 alleles, amyloidosis, CDR, and neurodegeneration. Patterns involving insular and orbitofrontal cortices, as well as midline regions of frontal and parietal lobes demonstrated the greatest neurodegeneration with progressive Alzheimer's dementia. A single pattern for the lateral parietal and posterior superior temporal cortices demonstrated preserved glucose metabolism for all diagnostic groups, including Alzheimer's dementia. Patterns correlated significantly with topical terms from the Neurosynth platform, thereby providing semantic representations for patterns such as attention, memory, language, fear/reward, movement and motor planning. In summary, NMF is a data-driven, principled, supervised statistical learning method that provides interpretable patterns of neurodegeneration. These patterns can help inform the understanding and treatment of Alzheimer's disease. Highlights: ▪ Data-driven non-negative matrix factorization (NMF) identified 24 canonical patterns of spatial covariance of cerebral glucose metabolism. The training data comprised healthy older participants (CDR = 0 without amyloidosis) cross-sectionally drawn from ADNI. ▪ In healthy participants, mean SUVRs for specific patterns in precuneus, lateral parietal cortex, and subcortical areas including superficial white matter and striatum, demonstrated increasing glucose metabolism with advancing age. ▪ In asymptomatic participants with amyloidosis , glucose metabolism increased compared to those who were asymptomatic without amyloid , particularly in medial prefrontal cortex, frontoparietal cortex, occipital white, and posterior cerebellar regions. ▪ In symptomatic participants with amyloidosis , insular cortex, medial frontal cortex, and prefrontal cortex demonstrated the most severe losses of glucose metabolism with increasing CDR. Lateral parietal and posterior superior temporal cortices retained glucose metabolism even for CDR > 0.5. ▪ NMF models of glucose metabolism are consistent with models arising from principal components, or eigenbrains, while adding additional regional interpretability. ▪ NMF patterns correlated with regions catalogued in Neurosynth. Following corrections for spatial autocorrelations, NMF patterns revealed meta-analytic identifications of patterns with Neurosynth topics of fear/reward, attention, memory, language, and movement with motor planning. Patterns varied with degrees of cognitive impairment.

8.
Neurobiol Aging ; 105: 241-251, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34126466

RESUMO

Vascular endothelial growth factor (VEGF) is a complex signaling protein that supports vascular and neuronal function. Alzheimer's disease (AD) -neuropathological hallmarks interfere with VEGF signaling and modify previously detected positive associations between cerebral spinal fluid (CSF) VEGF and cognition and hippocampal volume. However, it remains unknown 1) whether regional relationships between VEGF and glucose metabolism and cortical thinning exist, and 2) whether AD-neuropathological hallmarks (CSF Aß, t-tau, p-tau) also modify these relationships. We addressed this in 310 Alzheimer's Disease Neuroimaging Initiative (ADNI) participants (92 cognitively normal, 149 mild cognitive impairment, 69 AD; 215 CSF Aß+, 95 CSF Aß-) with regional cortical thickness and cognition measurements and 158 participants with FDG-PET. In Aß + participants (CSF Aß42 ≤ 192 pg/mL), higher CSF VEGF levels were associated with greater FDG-PET signal in the inferior parietal, and middle and inferior temporal cortices. Abnormal CSF amyloid and tau levels strengthened the positive association between VEGF and regional FDG-PET indices. VEGF also had both direct associations with semantic memory, as well as indirect associations mediated by regional FDG-PET signal to cognition.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/psicologia , Cognição , Função Executiva , Fator A de Crescimento do Endotélio Vascular/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Córtex Cerebral/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Proteínas tau/líquido cefalorraquidiano
9.
Alzheimers Dement (Amst) ; 13(1): e12202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34189247

RESUMO

INTRODUCTION: Mexican Americans remain severely underrepresented in Alzheimer's disease (AD) research. The Health & Aging Brain among Latino Elders (HABLE) study was created to fill important gaps in the existing literature. METHODS: Community-dwelling Mexican Americans and non-Hispanic White adults and elders (age 50 and above) were recruited. All participants underwent comprehensive assessments including an interview, functional exam, clinical labs, informant interview, neuropsychological testing, and 3T magnetic resonance imaging (MRI) of the brain. Amyloid and tau positron emission tomography (PET) scans were added at visit 2. Blood samples were stored in the Biorepository. RESULTS: Data was examined from n = 1705 participants. Significant group differences were found in medical, demographic, and sociocultural factors. Cerebral amyloid and neurodegeneration imaging markers were significantly different between Mexican Americans and non-Hispanic Whites. DISCUSSION: The current data provide strong support for continued investigations that examine the risk factors for and biomarkers of AD among diverse populations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa