Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(12): 5819-5827, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30833390

RESUMO

Preterm birth (PTB) complications are the leading cause of long-term morbidity and mortality in children. By using whole blood samples, we integrated whole-genome sequencing (WGS), RNA sequencing (RNA-seq), and DNA methylation data for 270 PTB and 521 control families. We analyzed this combined dataset to identify genomic variants associated with PTB and secondary analyses to identify variants associated with very early PTB (VEPTB) as well as other subcategories of disease that may contribute to PTB. We identified differentially expressed genes (DEGs) and methylated genomic loci and performed expression and methylation quantitative trait loci analyses to link genomic variants to these expression and methylation changes. We performed enrichment tests to identify overlaps between new and known PTB candidate gene systems. We identified 160 significant genomic variants associated with PTB-related phenotypes. The most significant variants, DEGs, and differentially methylated loci were associated with VEPTB. Integration of all data types identified a set of 72 candidate biomarker genes for VEPTB, encompassing genes and those previously associated with PTB. Notably, PTB-associated genes RAB31 and RBPJ were identified by all three data types (WGS, RNA-seq, and methylation). Pathways associated with VEPTB include EGFR and prolactin signaling pathways, inflammation- and immunity-related pathways, chemokine signaling, IFN-γ signaling, and Notch1 signaling. Progress in identifying molecular components of a complex disease is aided by integrated analyses of multiple molecular data types and clinical data. With these data, and by stratifying PTB by subphenotype, we have identified associations between VEPTB and the underlying biology.


Assuntos
Predisposição Genética para Doença/genética , Nascimento Prematuro/genética , Metilação de DNA/genética , Feminino , Genômica/métodos , Humanos , Recém-Nascido , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Transdução de Sinais/genética , Sequenciamento Completo do Genoma/métodos
2.
Genet Med ; 21(5): 1240-1245, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30293991

RESUMO

PURPOSE: Clinical exome and gene panel testing can provide molecular diagnoses for patients with rare Mendelian disorders, but for many patients these tests are nonexplanatory. We investigated whether interrogation of alternative transcripts in known disease genes could provide answers for additional patients. METHODS: We integrated alternative transcripts for known neonatal epilepsy genes with RNA-Seq data to identify brain-expressed coding regions that are not evaluated by popular neonatal epilepsy clinical gene panel and exome tests. RESULTS: We found brain-expressed alternative coding regions in 89 (30%) of 292 neonatal epilepsy genes. The 147 regions encompass 15,713 bases that are noncoding in the primary transcripts analyzed by the clinical tests. Alternative coding regions from at least 5 genes carry reported pathogenic variants. Three candidate variants in these regions were identified in public exome data from 337 epilepsy patients. Incorporating alternative transcripts into the analysis of neonatal epilepsy genes in 44 patient genomes identified the pathogenic variant for the epilepsy case and 2 variants of uncertain significance (VUS) among the 43 control cases. CONCLUSION: Assessment of alternative transcripts in exon-based clinical genetic tests, including gene panel, exome, and genome sequencing, may provide diagnoses for patients for whom standard testing is unrevealing, without introducing many VUS.


Assuntos
Epilepsia Neonatal Benigna/diagnóstico , Testes Genéticos/métodos , Análise de Sequência de DNA/métodos , Estudos de Casos e Controles , Bases de Dados Genéticas , Epilepsia/diagnóstico , Epilepsia/genética , Epilepsia Neonatal Benigna/genética , Exoma/genética , Éxons/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Recém-Nascido , Masculino , Mutação , Sequenciamento do Exoma/métodos
4.
Genet Med ; 18(3): 221-30, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26334177

RESUMO

PURPOSE: To assess the potential of whole-genome sequencing (WGS) to replicate and augment results from conventional blood-based newborn screening (NBS). METHODS: Research-generated WGS data from an ancestrally diverse cohort of 1,696 infants and both parents of each infant were analyzed for variants in 163 genes involved in disorders included or under discussion for inclusion in US NBS programs. WGS results were compared with results from state NBS and related follow-up testing. RESULTS: NBS genes are generally well covered by WGS. There is a median of one (range: 0-6) database-annotated pathogenic variant in the NBS genes per infant. Results of WGS and NBS in detecting 28 state-screened disorders and four hemoglobin traits were concordant for 88.6% of true positives (n = 35) and 98.9% of true negatives (n = 45,757). Of the five infants affected with a state-screened disorder, WGS identified two whereas NBS detected four. WGS yielded fewer false positives than NBS (0.037 vs. 0.17%) but more results of uncertain significance (0.90 vs. 0.013%). CONCLUSION: WGS may help rule in and rule out NBS disorders, pinpoint molecular diagnoses, and detect conditions not amenable to current NBS assays.


Assuntos
Predisposição Genética para Doença , Genoma Humano , Triagem Neonatal/métodos , Análise de Sequência de DNA/métodos , Estudos de Coortes , Feminino , Variação Genética , Humanos , Recém-Nascido , Masculino , Sensibilidade e Especificidade
5.
NPJ Microgravity ; 10(1): 61, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862523

RESUMO

NASA has employed high-throughput molecular assays to identify sub-cellular changes impacting human physiology during spaceflight. Machine learning (ML) methods hold the promise to improve our ability to identify important signals within highly dimensional molecular data. However, the inherent limitation of study subject numbers within a spaceflight mission minimizes the utility of ML approaches. To overcome the sample power limitations, data from multiple spaceflight missions must be aggregated while appropriately addressing intra- and inter-study variabilities. Here we describe an approach to log transform, scale and normalize data from six heterogeneous, mouse liver-derived transcriptomics datasets (ntotal = 137) which enabled ML-methods to classify spaceflown vs. ground control animals (AUC ≥ 0.87) while mitigating the variability from mission-of-origin. Concordance was found between liver-specific biological processes identified from harmonized ML-based analysis and study-by-study classical omics analysis. This work demonstrates the feasibility of applying ML methods on integrated, heterogeneous datasets of small sample size.

6.
Sci Rep ; 12(1): 438, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013336

RESUMO

The likely genetic architecture of complex diseases is that subgroups of patients share variants in genes in specific networks sufficient to express a shared phenotype. We combined high throughput sequencing with advanced bioinformatic approaches to identify such subgroups of patients with variants in shared networks. We performed targeted sequencing of patients with 2 or 3 generations of preterm birth on genes, gene sets and haplotype blocks that were highly associated with preterm birth. We analyzed the data using a multi-sample, protein-protein interaction (PPI) tool to identify significant clusters of patients associated with preterm birth. We identified shared protein interaction networks among preterm cases in two statistically significant clusters, p < 0.001. We also found two small control-dominated clusters. We replicated these data on an independent, large birth cohort. Separation testing showed significant similarity scores between the clusters from the two independent cohorts of patients. Canonical pathway analysis of the unique genes defining these clusters demonstrated enrichment in inflammatory signaling pathways, the glucocorticoid receptor, the insulin receptor, EGF and B-cell signaling, These results support a genetic architecture defined by subgroups of patients that share variants in genes in specific networks and pathways which are sufficient to give rise to the disease phenotype.


Assuntos
Nascimento Prematuro/genética , Mapas de Interação de Proteínas , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Gravidez , Nascimento Prematuro/metabolismo , Adulto Jovem
7.
Sci Rep ; 12(1): 16825, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207342

RESUMO

The space environment includes unique hazards like radiation and microgravity which can adversely affect biological systems. We assessed a multi-omics NASA GeneLab dataset where mice were hindlimb unloaded and/or gamma irradiated for 21 days followed by retinal analysis at 7 days, 1 month or 4 months post-exposure. We compared time-matched epigenomic and transcriptomic retinal profiles resulting in a total of 4178 differentially methylated loci or regions, and 457 differentially expressed genes. Highest correlation in methylation difference was seen across different conditions at the same time point. Nucleotide metabolism biological processes were enriched in all groups with activation at 1 month and suppression at 7 days and 4 months. Genes and processes related to Notch and Wnt signaling showed alterations 4 months post-exposure. A total of 23 genes showed significant changes in methylation and expression compared to unexposed controls, including genes involved in retinal function and inflammatory response. This multi-omics analysis interrogates the epigenomic and transcriptomic impacts of radiation and hindlimb unloading on the retina in isolation and in combination and highlights important molecular mechanisms at different post-exposure stages.


Assuntos
Ausência de Peso , Animais , Elevação dos Membros Posteriores/fisiologia , Estudos Longitudinais , Camundongos , Nucleotídeos , Retina
8.
Science ; 372(6543): 725-729, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33888597

RESUMO

Effects of radiation exposure from the Chernobyl nuclear accident remain a topic of interest. We investigated germline de novo mutations (DNMs) in children born to parents employed as cleanup workers or exposed to occupational and environmental ionizing radiation after the accident. Whole-genome sequencing of 130 children (born 1987-2002) and their parents did not reveal an increase in the rates, distributions, or types of DNMs relative to the results of previous studies. We find no elevation in total DNMs, regardless of cumulative preconception gonadal paternal [mean = 365 milligrays (mGy), range = 0 to 4080 mGy] or maternal (mean = 19 mGy, range = 0 to 550 mGy) exposure to ionizing radiation. Thus, we conclude that, over this exposure range, evidence is lacking for a substantial effect on germline DNMs in humans, suggesting minimal impact from transgenerational genetic effects.

9.
BMC Biotechnol ; 10: 10, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20146813

RESUMO

BACKGROUND: Despite current knowledge of mutations in 45 genes that can cause nonsyndromic sensorineural hearing loss (SNHL), no unified clinical test has been developed that can comprehensively detect mutations in multiple genes. We therefore designed Affymetrix resequencing microarrays capable of resequencing 13 genes mutated in SNHL (GJB2, GJB6, CDH23, KCNE1, KCNQ1, MYO7A, OTOF, PDS, MYO6, SLC26A5, TMIE, TMPRSS3, USH1C). We present results from hearing loss arrays developed in two different research facilities and highlight some of the approaches we adopted to enhance the applicability of resequencing arrays in a clinical setting. RESULTS: We leveraged sequence and intensity pattern features responsible for diminished coverage and accuracy and developed a novel algorithm, sPROFILER, which resolved >80% of no-calls from GSEQ and allowed 99.6% (range: 99.2-99.8%) of sequence to be called, while maintaining overall accuracy at >99.8% based upon dideoxy sequencing comparison. CONCLUSIONS: Together, these findings provide insight into critical issues for disease-centered resequencing protocols suitable for clinical application and support the use of array-based resequencing technology as a valuable molecular diagnostic tool for pediatric SNHL and other genetic diseases with substantial genetic heterogeneity.


Assuntos
Análise Mutacional de DNA/métodos , Perda Auditiva Neurossensorial/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Algoritmos , Composição de Bases , Conexina 26 , Conexinas , Humanos , Mutação , Sensibilidade e Especificidade
10.
Sci Rep ; 10(1): 17797, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082495

RESUMO

Cesarean section (CS) is recognized as being a shared environmental risk factor associated with chronic immune disease. A study of maternal gene expression changes between different delivery modes can add to our understanding of how CS contributes to disease patterns later in life. We evaluated the association of delivery mode with postpartum gene expression using a cross-sectional study of 324 mothers who delivered full-term (≥ 37 weeks) singletons. Of these, 181 mothers had a vaginal delivery and 143 had a CS delivery (60 with and 83 without labor). Antimicrobial peptides (AMP) were upregulated in vaginal delivery compared to CS with or without labor. Peptidase inhibitor 3 (PI3), a gene in the antimicrobial peptide pathway and known to be involved in antimicrobial and anti-inflammatory activities, showed a twofold increase in vaginal delivery compared to CS with or without labor (adjusted p-value 1.57 × 10-11 and 3.70 × 10-13, respectively). This study evaluates differences in gene expression by delivery mode and provides evidence of antimicrobial peptide upregulation in vaginal delivery compared to CS with or without labor. Further exploration is needed to determine if AMP upregulation provides protection against CS-associated diseases later in life.


Assuntos
Cesárea/métodos , Parto Obstétrico/métodos , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Adulto , Estudos Transversais , Elafina , Feminino , Regulação da Expressão Gênica , Humanos , Trabalho de Parto , Proteínas Citotóxicas Formadoras de Poros/genética , Período Pós-Parto , Gravidez , Transcriptoma , Regulação para Cima
11.
J Comput Biol ; 26(5): 405-419, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30942611

RESUMO

Next-generation sequencing enables advances in the clinical application of genomics by providing high-throughput detection of genomic variation. However, next-generation sequencing technologies, especially whole-genome sequencing (WGS), are often associated with a high false-positive rate. Trio-based WGS can contribute significantly towards improved quality control methods. Mendelian-inconsistent calls (MIC) in parent-child trios are commonly attributed to erroneous sequencing calls, as the true de novo mutation rate is extremely low compared with MIC incidence. Here, we analyzed WGS data from 1314 mother, father, and child trios across ethnically diverse populations with the goal of characterizing MIC. Genotype calls in a trio can be used to assign different signatures to MIC. MIC occur more frequently within repeats but show varying distribution and error mechanisms across repeat types. MIC are enriched within poly-A/T runs in short interspersed nuclear elements. Alignability scores, allele balance, and relative parental read depth vary among MIC signatures and these differences should be considered when designing filters for MIC reduction. MIC cluster in germline deletions and these MIC also segregate with population. Our results provide a basis for making decisions on how each MIC type should be evaluated before discarding them as errors or including them in alternative applications. With the reduction of sequencing cost, family trio whole genome and exome analysis are being performed more routinely in clinical practice. We provide a reference that can be used for annotating MIC with their frequencies in a larger population to aid in the filtering of candidate de novo mutations.


Assuntos
Mutação/genética , Alelos , Exoma/genética , Feminino , Genoma Humano/genética , Genômica/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Sequenciamento Completo do Genoma/métodos
12.
Nat Commun ; 7: 10486, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26781218

RESUMO

Germline mutations are the source of evolution and contribute substantially to many health-related processes. Here we use whole-genome deep sequencing data from 693 parents-offspring trios to examine the de novo point mutations (DNMs) in the offspring. Our estimate for the mutation rate per base pair per generation is 1.05 × 10(-8), well within the range of previous studies. We show that maternal age has a small but significant correlation with the total number of DNMs in the offspring after controlling for paternal age (0.51 additional mutations per year, 95% CI: 0.29, 0.73), which was not detectable in the smaller and younger parental cohorts of earlier studies. Furthermore, while the total number of DNMs increases at a constant rate for paternal age, the contribution from the mother increases at an accelerated rate with age.These observations have implications related to the incidence of de novo mutations relating to maternal age.


Assuntos
Mutação em Linhagem Germinativa , Idade Materna , Adolescente , Adulto , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Taxa de Mutação , Idade Paterna , Adulto Jovem
13.
PLoS One ; 9(4): e94554, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24728327

RESUMO

Technological advances coupled with decreasing costs are bringing whole genome and whole exome sequencing closer to routine clinical use. One of the hurdles to clinical implementation is the high number of variants of unknown significance. For cancer-susceptibility genes, the difficulty in interpreting the clinical relevance of the genomic variants is compounded by the fact that most of what is known about these variants comes from the study of highly selected populations, such as cancer patients or individuals with a family history of cancer. The genetic variation in known cancer-susceptibility genes in the general population has not been well characterized to date. To address this gap, we profiled the nonsynonymous genomic variation in 158 genes causally implicated in carcinogenesis using high-quality whole genome sequences from an ancestrally diverse cohort of 681 healthy individuals. We found that all individuals carry multiple variants that may impact cancer susceptibility, with an average of 68 variants per individual. Of the 2,688 allelic variants identified within the cohort, most are very rare, with 75% found in only 1 or 2 individuals in our population. Allele frequencies vary between ancestral groups, and there are 21 variants for which the minor allele in one population is the major allele in another. Detailed analysis of a selected subset of 5 clinically important cancer genes, BRCA1, BRCA2, KRAS, TP53, and PTEN, highlights differences between germline variants and reported somatic mutations. The dataset can serve a resource of genetic variation in cancer-susceptibility genes in 6 ancestry groups, an important foundation for the interpretation of cancer risk from personal genome sequences.


Assuntos
Predisposição Genética para Doença , Genoma Humano/genética , Mutação em Linhagem Germinativa/genética , Saúde , Neoplasias/genética , Análise de Sequência de DNA , Adolescente , Adulto , Alelos , Estudos de Coortes , Feminino , Frequência do Gene/genética , Pool Gênico , Genes Neoplásicos , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Fases de Leitura Aberta/genética , Filogenia , Adulto Jovem
14.
Curr Protoc Hum Genet ; Chapter 7: Unit 7.17, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19360699

RESUMO

This unit provides an overview of oligo hybridization-based resequencing and a wide range of considerations for implementing the technology and analyzing the resulting data. The specific technology discussed is the Affymetrix GeneChip CustomSeq Resequencing Array platform. Concepts related to array design, experimental protocols, and base-calling using existing algorithms are presented. Details that should be evaluated during development of sequence tiling, target amplification, and PCR protocols are addressed. An overview of the Affymetrix GeneChip Sequence Analysis Software (GSEQ) is provided, along with factors that influence base-calling coverage and accuracy. Also outlined are performance measures that can be used to characterize base-calling with resequencing arrays, as well as factors known to affect their performance. Limitations associated with detection of insertions and deletions (indels) are discussed, with empirical data from our experiments used to outline possible approaches to indel detection. Critical topics in the design, implementation, and analysis of targeted sequencing arrays not previously discussed in detail are highlighted.


Assuntos
Algoritmos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência de DNA , Sequência de Bases , Modelos Biológicos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa