Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nucleic Acids Res ; 45(D1): D555-D559, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27924032

RESUMO

Secondary metabolites produced by microorganisms are the main source of bioactive compounds that are in use as antimicrobial and anticancer drugs, fungicides, herbicides and pesticides. In the last decade, the increasing availability of microbial genomes has established genome mining as a very important method for the identification of their biosynthetic gene clusters (BGCs). One of the most popular tools for this task is antiSMASH. However, so far, antiSMASH is limited to de novo computing results for user-submitted genomes and only partially connects these with BGCs from other organisms. Therefore, we developed the antiSMASH database, a simple but highly useful new resource to browse antiSMASH-annotated BGCs in the currently 3907 bacterial genomes in the database and perform advanced search queries combining multiple search criteria. antiSMASH-DB is available at http://antismash-db.secondarymetabolites.org/.


Assuntos
Vias Biossintéticas , Bases de Dados Factuais , Microbiologia , Metabolismo Secundário , Vias Biossintéticas/genética , Biologia Computacional/métodos , Regulação da Expressão Gênica , Processamento de Proteína Pós-Traducional , Metabolismo Secundário/genética , Navegador
2.
BMC Ecol ; 16(1): 49, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27765035

RESUMO

BACKGROUND: Making forecasts about biodiversity and giving support to policy relies increasingly on large collections of data held electronically, and on substantial computational capability and capacity to analyse, model, simulate and predict using such data. However, the physically distributed nature of data resources and of expertise in advanced analytical tools creates many challenges for the modern scientist. Across the wider biological sciences, presenting such capabilities on the Internet (as "Web services") and using scientific workflow systems to compose them for particular tasks is a practical way to carry out robust "in silico" science. However, use of this approach in biodiversity science and ecology has thus far been quite limited. RESULTS: BioVeL is a virtual laboratory for data analysis and modelling in biodiversity science and ecology, freely accessible via the Internet. BioVeL includes functions for accessing and analysing data through curated Web services; for performing complex in silico analysis through exposure of R programs, workflows, and batch processing functions; for on-line collaboration through sharing of workflows and workflow runs; for experiment documentation through reproducibility and repeatability; and for computational support via seamless connections to supporting computing infrastructures. We developed and improved more than 60 Web services with significant potential in many different kinds of data analysis and modelling tasks. We composed reusable workflows using these Web services, also incorporating R programs. Deploying these tools into an easy-to-use and accessible 'virtual laboratory', free via the Internet, we applied the workflows in several diverse case studies. We opened the virtual laboratory for public use and through a programme of external engagement we actively encouraged scientists and third party application and tool developers to try out the services and contribute to the activity. CONCLUSIONS: Our work shows we can deliver an operational, scalable and flexible Internet-based virtual laboratory to meet new demands for data processing and analysis in biodiversity science and ecology. In particular, we have successfully integrated existing and popular tools and practices from different scientific disciplines to be used in biodiversity and ecological research.


Assuntos
Biodiversidade , Ecologia/métodos , Ecologia/instrumentação , Internet , Modelos Biológicos , Software , Fluxo de Trabalho
3.
PLoS Biol ; 9(6): e1001088, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21713030

RESUMO

A vast and rich body of information has grown up as a result of the world's enthusiasm for 'omics technologies. Finding ways to describe and make available this information that maximise its usefulness has become a major effort across the 'omics world. At the heart of this effort is the Genomic Standards Consortium (GSC), an open-membership organization that drives community-based standardization activities, Here we provide a short history of the GSC, provide an overview of its range of current activities, and make a call for the scientific community to join forces to improve the quality and quantity of contextual information about our public collections of genomes, metagenomes, and marker gene sequences.


Assuntos
Bases de Dados Genéticas , Genômica/normas , Cooperação Internacional , Metagenoma
4.
Nat Chem Biol ; 11(9): 625-31, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26284661
5.
Nucleic Acids Res ; 38(Database issue): D391-5, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19858098

RESUMO

Megx.net is a database and portal that provides integrated access to georeferenced marker genes, environment data and marine genome and metagenome projects for microbial ecological genomics. All data are stored in the Microbial Ecological Genomics DataBase (MegDB), which is subdivided to hold both sequence and habitat data and global environmental data layers. The extended system provides access to several hundreds of genomes and metagenomes from prokaryotes and phages, as well as over a million small and large subunit ribosomal RNA sequences. With the refined Genes Mapserver, all data can be interactively visualized on a world map and statistics describing environmental parameters can be calculated. Sequence entries have been curated to comply with the proposed minimal standards for genomes and metagenomes (MIGS/MIMS) of the Genomic Standards Consortium. Access to data is facilitated by Web Services. The updated megx.net portal offers microbial ecologists greatly enhanced database content, and new features and tools for data analysis, all of which are freely accessible from our webpage http://www.megx.net.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Bases de Dados de Proteínas , Animais , Biologia Computacional/tendências , Ecologia , Meio Ambiente , Genoma Bacteriano , Geografia , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , Oceanos e Mares , Estrutura Terciária de Proteína , Software
6.
Elife ; 112022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35356891

RESUMO

Genes of unknown function are among the biggest challenges in molecular biology, especially in microbial systems, where 40-60% of the predicted genes are unknown. Despite previous attempts, systematic approaches to include the unknown fraction into analytical workflows are still lacking. Here, we present a conceptual framework, its translation into the computational workflow AGNOSTOS and a demonstration on how we can bridge the known-unknown gap in genomes and metagenomes. By analyzing 415,971,742 genes predicted from 1749 metagenomes and 28,941 bacterial and archaeal genomes, we quantify the extent of the unknown fraction, its diversity, and its relevance across multiple organisms and environments. The unknown sequence space is exceptionally diverse, phylogenetically more conserved than the known fraction and predominantly taxonomically restricted at the species level. From the 71 M genes identified to be of unknown function, we compiled a collection of 283,874 lineage-specific genes of unknown function for Cand. Patescibacteria (also known as Candidate Phyla Radiation, CPR), which provides a significant resource to expand our understanding of their unusual biology. Finally, by identifying a target gene of unknown function for antibiotic resistance, we demonstrate how we can enable the generation of hypotheses that can be used to augment experimental data.


It is estimated that scientists do not know what half of microbial genes actually do. When these genes are discovered in microorganisms grown in the lab or found in environmental samples, it is not possible to identify what their roles are. Many of these genes are excluded from further analyses for these reasons, meaning that the study of microbial genes tends to be limited to genes that have already been described. These limitations hinder research into microbiology, because information from newly discovered genes cannot be integrated to better understand how these organisms work. Experiments to understand what role these genes have in the microorganisms are labor-intensive, so new analytical strategies are needed. To do this, Vanni et al. developed a new framework to categorize genes with unknown roles, and a computational workflow to integrate them into traditional analyses. When this approach was applied to over 400 million microbial genes (both with known and unknown roles), it showed that the share of genes with unknown functions is only about 30 per cent, smaller than previously thought. The analysis also showed that these genes are very diverse, revealing a huge space for future research and potential applications. Combining their approach with experimental data, Vanni et al. were able to identify a gene with a previously unknown purpose that could be involved in antibiotic resistance. This system could be useful for other scientists studying microorganisms to get a more complete view of microbial systems. In future, it may also be used to analyze the genetics of other organisms, such as plants and animals.


Assuntos
Bactérias , Genoma Arqueal , Bactérias/genética , Metagenoma , Fases de Leitura Aberta
7.
BMC Bioinformatics ; 11: 358, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20591175

RESUMO

BACKGROUND: Environmental sequence datasets are increasing at an exponential rate; however, the vast majority of them lack appropriate descriptors like sampling location, time and depth/altitude: generally referred to as metadata or contextual data. The consistent capture and structured submission of these data is crucial for integrated data analysis and ecosystems modeling. The application MetaBar has been developed, to support consistent contextual data acquisition. RESULTS: MetaBar is a spreadsheet and web-based software tool designed to assist users in the consistent acquisition, electronic storage, and submission of contextual data associated to their samples. A preconfigured Microsoft Excel spreadsheet is used to initiate structured contextual data storage in the field or laboratory. Each sample is given a unique identifier and at any stage the sheets can be uploaded to the MetaBar database server. To label samples, identifiers can be printed as barcodes. An intuitive web interface provides quick access to the contextual data in the MetaBar database as well as user and project management capabilities. Export functions facilitate contextual and sequence data submission to the International Nucleotide Sequence Database Collaboration (INSDC), comprising of the DNA DataBase of Japan (DDBJ), the European Molecular Biology Laboratory database (EMBL) and GenBank. MetaBar requests and stores contextual data in compliance to the Genomic Standards Consortium specifications. The MetaBar open source code base for local installation is available under the GNU General Public License version 3 (GNU GPL3). CONCLUSION: The MetaBar software supports the typical workflow from data acquisition and field-sampling to contextual data enriched sequence submission to an INSDC database. The integration with the megx.net marine Ecological Genomics database and portal facilitates georeferenced data integration and metadata-based comparisons of sampling sites as well as interactive data visualization. The ample export functionalities and the INSDC submission support enable exchange of data across disciplines and safeguarding contextual data.


Assuntos
Bases de Dados Genéticas , Genômica , Armazenamento e Recuperação da Informação/métodos , Software , Sequência de Bases , Internet , Linguagens de Programação , Interface Usuário-Computador , Fluxo de Trabalho
8.
BMC Bioinformatics ; 9: 459, 2008 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-18957118

RESUMO

BACKGROUND: Modern sequencing technologies allow rapid sequencing and bioinformatic analysis of genomes and metagenomes. With every new sequencing project a vast number of new proteins become available with many genes remaining functionally unclassified based on evidences from sequence similarities alone. Extending similarity searches with gene pattern approaches, defined as genes sharing a distinct genomic neighbourhood, have shown to significantly improve the number of functional assignments. Further functional evidences can be gained by correlating these gene patterns with prevailing environmental parameters. MetaMine was developed to approach the large pool of unclassified proteins by searching for recurrent gene patterns across habitats based on key genes. RESULTS: MetaMine is an interactive data mining tool which enables the detection of gene patterns in an environmental context. The gene pattern search starts with a user defined environmentally interesting key gene. With this gene a BLAST search is carried out against the Microbial Ecological Genomics DataBase (MEGDB) containing marine genomic and metagenomic sequences. This is followed by the determination of all neighbouring genes within a given distance and a search for functionally equivalent genes. In the final step a set of common genes present in a defined number of distinct genomes is determined. The gene patterns found are associated with their individual pattern instances describing gene order and directions. They are presented together with information about the sample and the habitat. MetaMine is implemented in Java and provided as a client/server application with a user-friendly graphical user interface. The system was evaluated with environmentally relevant genes related to the methane-cycle and carbon monoxide oxidation. CONCLUSION: MetaMine offers a targeted, semi-automatic search for gene patterns based on expert input. The graphical user interface of MetaMine provides a user-friendly overview of the computed gene patterns for further inspection in an ecological context. Prevailing biological processes associated with a key gene can be used to infer new annotations and shape hypotheses to guide further analyses. The use-cases demonstrate that meaningful gene patterns can be quickly detected using MetaMine.MetaMine is freely available for academic use from http://www.megx.net/metamine.


Assuntos
Algoritmos , Biologia Computacional/métodos , Bases de Dados Genéticas , Ecossistema , Família Multigênica/genética , Software , Reconhecimento Automatizado de Padrão
9.
BMC Bioinformatics ; 9: 177, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18380896

RESUMO

BACKGROUND: Current sequencing technologies give access to sequence information for genomes and metagenomes at a tremendous speed. Subsequent data processing is mainly performed by automatic pipelines provided by the sequencing centers. Although, standardised workflows are desirable and useful in many respects, rational data mining, comparative genomics, and especially the interpretation of the sequence information in the biological context, demands for intuitive, flexible, and extendable solutions. RESULTS: The JCoast software tool was primarily designed to analyse and compare (meta)genome sequences of prokaryotes. Based on a pre-computed GenDB database project, JCoast offers a flexible graphical user interface (GUI), as well as an application programming interface (API) that facilitates back-end data access. JCoast offers individual, cross genome-, and metagenome analysis, and assists the biologist in exploration of large and complex datasets. CONCLUSION: JCoast combines all functions required for the mining, annotation, and interpretation of (meta)genomic data. The lightweight software solution allows the user to easily take advantage of advanced back-end database structures by providing a programming and graphical user interface to answer biological questions. JCoast is available at the project homepage.


Assuntos
Algoritmos , Mapeamento Cromossômico/métodos , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Genéticas , Células Procarióticas/fisiologia , Software , Interface Usuário-Computador , Linguagens de Programação
10.
OMICS ; 12(2): 115-21, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18479204

RESUMO

The Genomic Contextual Data Markup Language (GCDML) is a core project of the Genomic Standards Consortium (GSC) that implements the "Minimum Information about a Genome Sequence" (MIGS) specification and its extension, the "Minimum Information about a Metagenome Sequence" (MIMS). GCDML is an XML Schema for generating MIGS/MIMS compliant reports for data entry, exchange, and storage. When mature, this sample-centric, strongly-typed schema will provide a diverse set of descriptors for describing the exact origin and processing of a biological sample, from sampling to sequencing, and subsequent analysis. Here we describe the need for such a project, outline design principles required to support the project, and make an open call for participation in defining the future content of GCDML. GCDML is freely available, and can be downloaded, along with documentation, from the GSC Web site (http://gensc.org).


Assuntos
Bases de Dados Genéticas , Genômica , Linguagens de Programação
11.
OMICS ; 12(2): 129-36, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18416669

RESUMO

There is an urgent need to capture metadata on the rapidly growing number of genomic, metagenomic and related sequences, such as 16S ribosomal genes. This need is a major focus within the Genomic Standards Consortium (GSC), and Habitat is a key metadata descriptor in the proposed "Minimum Information about a Genome Sequence" (MIGS) specification. The goal of the work described here is to provide a light-weight, easy-to-use (small) set of terms ("Habitat-Lite") that captures high-level information about habitat while preserving a mapping to the recently launched Environment Ontology (EnvO). Our motivation for building Habitat-Lite is to meet the needs of multiple users, such as annotators curating these data, database providers hosting the data, and biologists and bioinformaticians alike who need to search and employ such data in comparative analyses. Here, we report a case study based on semiautomated identification of terms from GenBank and GOLD. We estimate that the terms in the initial version of Habitat-Lite would provide useful labels for over 60% of the kinds of information found in the GenBank isolation_source field, and around 85% of the terms in the GOLD habitat field. We present a revised version of Habitat-Lite defined within the EnvO Environmental Ontology through a new category, EnvO-Lite-GSC. We invite the community's feedback on its further development to provide a minimum list of terms to capture high-level habitat information and to provide classification bins needed for future studies.


Assuntos
Genômica , Bases de Dados Genéticas , Padrões de Referência
12.
OMICS ; 12(2): 151-6, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18407745

RESUMO

The Genomic Standards Consortium (GSC) invited a representative of the Long-Term Ecological Research (LTER) to its fifth workshop to present the Ecological Metadata Language (EML) metadata standard and its relationship to the Minimum Information about a Genome/Metagenome Sequence (MIGS/MIMS) and its implementation, the Genomic Contextual Data Markup Language (GCDML). The LTER is one of the top National Science Foundation (NSF) programs in biology since 1980, representing diverse ecosystems and creating long-term, interdisciplinary research, synthesis of information, and theory. The adoption of EML as the LTER network standard has been key to build network synthesis architectures based on high-quality standardized metadata. EML is the NSF-recognized metadata standard for LTER, and EML is a criteria used to review the LTER program progress. At the workshop, a potential crosswalk between the GCDML and EML was explored. Also, collaboration between the LTER and GSC developers was proposed to join efforts toward a common metadata cataloging designer's tool. The community adoption success of a metadata standard depends, among other factors, on the tools and trainings developed to use the standard. LTER's experience in embracing EML may help GSC to achieve similar success. A possible collaboration between LTER and GSC to provide training opportunities for GCDML and the associated tools is being explored. Finally, LTER is investigating EML enhancements to better accommodate genomics data, possibly integrating the GCDML schema into EML. All these action items have been accepted by the LTER contingent, and further collaboration between the GSC and LTER is expected.


Assuntos
Bases de Dados Genéticas , Linguagens de Programação , Genoma
13.
OMICS ; 12(2): 101-8, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18564914

RESUMO

This meeting report summarizes the proceedings of the "eGenomics: Cataloguing our Complete Genome Collection IV" workshop held June 6-8, 2007, at the National Institute for Environmental eScience (NIEeS), Cambridge, United Kingdom. This fourth workshop of the Genomic Standards Consortium (GSC) was a mix of short presentations, strategy discussions, and technical sessions. Speakers provided progress reports on the development of the "Minimum Information about a Genome Sequence" (MIGS) specification and the closely integrated "Minimum Information about a Metagenome Sequence" (MIMS) specification. The key outcome of the workshop was consensus on the next version of the MIGS/MIMS specification (v1.2). This drove further definition and restructuring of the MIGS/MIMS XML schema (syntax). With respect to semantics, a term vetting group was established to ensure that terms are properly defined and submitted to the appropriate ontology projects. Perhaps the single most important outcome of the workshop was a proposal to move beyond the concept of "minimum" to create a far richer XML schema that would define a "Genomic Contextual Data Markup Language" (GCDML) suitable for wider semantic integration across databases. GCDML will contain not only curated information (e.g., compliant with MIGS/MIMS), but also be extended to include a variety of data processing and calculations. Further information about the Genomic Standards Consortium and its range of activities can be found at http://gensc.org.


Assuntos
Bases de Dados Genéticas , Genômica , Educação , Linguagens de Programação , Padrões de Referência
14.
OMICS ; 12(2): 109-13, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18564915

RESUMO

This meeting report summarizes the proceedings of the fifth Genomic Standards Consortium (GSC) workshop held December 12-14, 2007, at the European Bioinformatics Institute (EBI), Cambridge, UK. This fifth workshop served as a milestone event in the evolution of the GSC (launched in September 2005); the key outcome of the workshop was the finalization of a stable version of the MIGS specification (v2.0) for publication. This accomplishment enables, and also in some cases necessitates, downstream activities, which are described in the multiauthor, consensus-driven articles in this special issue of OMICS produced as a direct result of the workshop. This report briefly summarizes the workshop and overviews the special issue. In particular, it aims to explain how the various GSC-led projects are working together to help this community achieve its stated mission of further standardizing the descriptions of genomes and metagenomes and implementing improved mechanisms of data exchange and integration to enable more accurate comparative analyses. Further information about the GSC and its range of activities can be found at http://gensc.org.


Assuntos
Genômica , Educação , Padrões de Referência
15.
Syst Appl Microbiol ; 31(4): 251-7, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18786793

RESUMO

Phylogenetic analysis is currently used worldwide for taxonomic classification and identification of microorganisms. However, despite the countless trees that have been reconstructed and published in recent decades, so far, no user-friendly compilation of recommendations to standardize the data analysis and tree reconstruction process has been published. Consequently, this standard operating procedure for phylogenetic inference (SOPPI) offers a helping hand for working through the process from sampling in the field to phylogenetic tree reconstruction and publication. It is not meant to be authoritative or comprehensive, but should help to make phylogenetic inference and diversity analysis more reliable and comparable between different laboratories. It is mainly focused on using the ribosomal RNA as a universal phylogenetic marker, but the principles and recommendations can be applied to any valid marker gene. Feedback and suggestions from the scientific community are welcome in order to improve these guidelines further. Any updates will be made available on the SILVA webpage at http://www.arb-silva.de/projects/soppi.


Assuntos
Bactérias/classificação , Biologia Computacional/métodos , Genes de RNAr , Filogenia , Análise de Sequência de RNA/métodos , Bactérias/genética , Sequência de Bases , Biologia Computacional/normas , Bases de Dados de Ácidos Nucleicos , Marcadores Genéticos , Alinhamento de Sequência , Análise de Sequência de RNA/normas
16.
Nucleic Acids Res ; 34(Database issue): D390-3, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16381894

RESUMO

Marine microbial genomics and metagenomics is an emerging field in environmental research. Since the completion of the first marine bacterial genome in 2003, the number of fully sequenced marine bacteria has grown rapidly. Concurrently, marine metagenomics studies are performed on a regular basis, and the resulting number of sequences is growing exponentially. To address environmentally relevant questions like organismal adaptations to oceanic provinces and regional differences in the microbial cycling of nutrients, it is necessary to couple sequence data with geographical information and supplement them with contextual information like physical, chemical and biological data. Therefore, new specialized databases are needed to organize and standardize data storage as well as centralize data access and interpretation. We introduce Megx.net, a set of databases and tools that handle genomic and metagenomic sequences in their environmental contexts. Megx.net includes (i) a geographic information system to systematically store and analyse marine genomic and metagenomic data in conjunction with contextual information; (ii) an environmental genome browser with fast search functionalities; (iii) a database with precomputed analyses for selected complete genomes; and (iv) a database and tool to classify metagenomic fragments based on oligonucleotide signatures. These integrative databases and webserver will help researchers to generate a better understanding of the functioning of marine ecosystems. All resources are freely accessible at http://www.megx.net.


Assuntos
Bases de Dados Genéticas , Ecologia , Genoma Arqueal , Genoma Bacteriano , Genômica , Internet , Oceanos e Mares , Software , Interface Usuário-Computador
17.
BMC Bioinformatics ; 8: 406, 2007 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-17953757

RESUMO

BACKGROUND: Marine ecological genomics can be defined as the application of genomic sciences to understand the structure and function of marine ecosystems. In this field of research, the analysis of genomes and metagenomes of environmental relevance must take into account the corresponding habitat (contextual) data, e.g. water depth, physical and chemical parameters. The creation of specialised software tools and databases is requisite to allow this new kind of integrated analysis. RESULTS: We implemented the MetaLook software for visualisation and analysis of marine ecological genomic and metagenomic data with respect to habitat parameters. MetaLook offers a three-dimensional user interface to interactively visualise DNA sequences on a world map, based on a centralised georeferenced database. The user can define environmental containers to organise the sequences according to different habitat criteria. To find similar sequences, the containers can be queried with either genes from the georeferenced database or user-imported sequences, using the BLAST algorithm. This allows an interactive assessment of the distribution of gene functions in the environment. CONCLUSION: MetaLook allows scientists to investigate sequence data in their environmental context and to explore correlations between genes and habitat parameters. This software is a step towards the creation of specialised tools to study constrained distributions and habitat specificity of genes correlated with specific processes. MetaLook is available at: http://www.megx.net/metalook.


Assuntos
Mapeamento Cromossômico/métodos , Ecologia/métodos , Genômica/métodos , Imageamento Tridimensional/métodos , Biologia Marinha/métodos , Software , Interface Usuário-Computador , Animais , Gráficos por Computador
18.
J Microbiol Biol Educ ; 17(1): 163-71, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27047614

RESUMO

The first Ocean Sampling Day (OSD) took place on June 21, 2014. In a coordinated effort, an internationally distributed group of scientists collected samples from marine surface waters in order to study microbial diversity on a single day with global granularity. Concurrently, citizen scientists enriched the OSD initiative through the MyOSD project, providing additional oceanographic measurements crucial to the contextualization of microbial diversity. Clear protocols, a user-friendly smartphone application, and an online web-form guided citizens in accurate data acquisition, promoting quality submissions to the project's information system. To evaluate the coverage and quality of MyOSD data submissions, we compared the sea surface temperature measurements acquired through OSD, MyOSD, and automatic in situ systems and satellite measurements. Our results show that the quality of citizen-science measurements was comparable to that of scientific measurements. As 79% of MyOSD measurements were conducted in geographic areas not covered by automatic in situ or satellite measurement, citizen scientists contributed significantly to worldwide oceanographic data gathering. Furthermore, survey results indicate that participation in MyOSD made citizens feel more engaged in ocean issues and may have increased their environmental awareness and ocean literacy.

19.
Stand Genomic Sci ; 10: 20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26203332

RESUMO

Contextual data collected concurrently with molecular samples are critical to the use of metagenomics in the fields of marine biodiversity, bioinformatics and biotechnology. We present here Marine Microbial Biodiversity, Bioinformatics and Biotechnology (M2B3) standards for "Reporting" and "Serving" data. The M2B3 Reporting Standard (1) describes minimal mandatory and recommended contextual information for a marine microbial sample obtained in the epipelagic zone, (2) includes meaningful information for researchers in the oceanographic, biodiversity and molecular disciplines, and (3) can easily be adopted by any marine laboratory with minimum sampling resources. The M2B3 Service Standard defines a software interface through which these data can be discovered and explored in data repositories. The M2B3 Standards were developed by the European project Micro B3, funded under 7(th) Framework Programme "Ocean of Tomorrow", and were first used with the Ocean Sampling Day initiative. We believe that these standards have value in broader marine science.

20.
Gigascience ; 4: 27, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26097697

RESUMO

Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world's oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.


Assuntos
Biologia Marinha , Biodiversidade , Sistemas de Gerenciamento de Base de Dados , Metagenômica , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa