Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36616806

RESUMO

Telecommunication networks are growing exponentially due to their significant role in civilization and industry. As a result of this very significant role, diverse applications have been appeared, which require secured links for data transmission. However, Internet-of-Things (IoT) devices are a substantial field that utilizes the wireless communication infrastructure. However, the IoT, besides the diversity of communications, are more vulnerable to attacks due to the physical distribution in real world. Attackers may prevent the services from running or even forward all of the critical data across the network. That is, an Intrusion Detection System (IDS) has to be integrated into the communication networks. In the literature, there are numerous methodologies to implement the IDSs. In this paper, two distinct models are proposed. In the first model, a custom Convolutional Neural Network (CNN) was constructed and combined with Long Short Term Memory (LSTM) deep network layers. The second model was built about the all fully connected layers (dense layers) to construct an Artificial Neural Network (ANN). Thus, the second model, which is a custom of an ANN layers with various dimensions, is proposed. Results were outstanding a compared to the Logistic Regression algorithm (LR), where an accuracy of 97.01% was obtained in the second model and 96.08% in the first model, compared to the LR algorithm, which showed an accuracy of 92.8%.


Assuntos
Aprendizado Profundo , Internet das Coisas , Internet , Algoritmos , Redes de Comunicação de Computadores
2.
Sensors (Basel) ; 21(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502580

RESUMO

In this work, we consider a UAV-assisted cell in a single user scenario. We consider the Quality of Experience (QoE) performance metric calculating it as a function of the packet loss ratio. In order to acquire this metric, a radio-channel emulation system was developed and tested under different conditions. The system consists of two independent blocks, separately emulating connections between the User Equipment (UE) and unmanned aerial vehicle (UAV) and between the UAV and Base station (BS). In order to estimate scenario usage constraints, an analytical model was developed. The results show that, in the described scenario, cell coverage can be enhanced with minimal impact on QoE.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa