Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem Biol ; 19(12): 1551-1560, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932529

RESUMO

Monoterpenoid indole alkaloids (MIAs) represent a large class of plant natural products with marketed pharmaceutical activities against a wide range of indications, including cancer, malaria and hypertension. Halogenated MIAs have shown improved pharmaceutical properties; however, synthesis of new-to-nature halogenated MIAs remains a challenge. Here we demonstrate a platform for de novo biosynthesis of two MIAs, serpentine and alstonine, in baker's yeast Saccharomyces cerevisiae and deploy it to systematically explore the biocatalytic potential of refactored MIA pathways for the production of halogenated MIAs. From this, we demonstrate conversion of individual haloindole derivatives to a total of 19 different new-to-nature haloserpentine and haloalstonine analogs. Furthermore, by process optimization and heterologous expression of a modified halogenase in the microbial MIA platform, we document de novo halogenation and biosynthesis of chloroalstonine. Together, this study highlights a microbial platform for enzymatic exploration and production of complex natural and new-to-nature MIAs with therapeutic potential.


Assuntos
Catharanthus , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Monoterpenos/metabolismo , Alcaloides Indólicos/metabolismo , Plantas/metabolismo , Preparações Farmacêuticas/metabolismo , Proteínas de Plantas/metabolismo
2.
Plant Cell Physiol ; 63(2): 200-216, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35166361

RESUMO

Many plant species from the Apocynaceae, Loganiaceae and Rubiaceae families evolved a specialized metabolism leading to the synthesis of a broad palette of monoterpene indole alkaloids (MIAs). These compounds are believed to constitute a cornerstone of the plant chemical arsenal but above all several MIAs display pharmacological properties that have been exploited for decades by humans to treat various diseases. It is established that MIAs are produced in planta due to complex biosynthetic pathways engaging a multitude of specialized enzymes but also a complex tissue and subcellular organization. In this context, N-methyltransferases (NMTs) represent an important family of enzymes indispensable for MIA biosynthesis but their characterization has always remained challenging. In particular, little is known about the subcellular localization of NMTs in MIA-producing plants. Here, we performed an extensive analysis on the subcellular localization of NMTs from four distinct medicinal plants but also experimentally validated that two putative NMTs from Catharanthus roseus exhibit NMT activity. Apart from providing unprecedented data regarding the targeting of these enzymes in planta, our results point out an additional layer of complexity to the subcellular organization of the MIA biosynthetic pathway by introducing tonoplast and peroxisome as new actors of the final steps of MIA biosynthesis.


Assuntos
Catharanthus , Monoterpenos , Alcaloides Indólicos , Metiltransferases , Peroxissomos , Proteínas de Plantas , gama-Tocoferol
3.
Plant Physiol ; 187(2): 846-857, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34608956

RESUMO

Specialized metabolites are chemically complex small molecules with a myriad of biological functions. To investigate plant-specialized metabolite biosynthesis more effectively, we developed an improved method for virus-induced gene silencing (VIGS). We designed a plasmid that incorporates fragments of both the target gene and knockdown marker gene (phytoene desaturase, PDS), which identifies tissues that have been successfully silenced in planta. To demonstrate the utility of this method, we used the terpenoid indole alkaloid (TIA) pathway in Madagascar periwinkle (Catharanthus roseus) as a model system. Catharanthus roseus is a medicinal plant well known for producing many bioactive compounds, such as vinblastine and vincristine. Our VIGS method enabled the discovery of a previously unknown biosynthetic enzyme, serpentine synthase (SS). This enzyme is a cytochrome P450 (CYP) that produces the ß-carboline alkaloids serpentine and alstonine, compounds with strong blue autofluorescence and potential pharmacological activity. The discovery of this enzyme highlights the complexity of TIA biosynthesis and demonstrates the utility of this improved VIGS method for discovering unidentified metabolic enzymes in plants.


Assuntos
Catharanthus/genética , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Catharanthus/enzimologia , Catharanthus/metabolismo , Inativação Gênica , Genes de Plantas , Proteínas de Plantas/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Transdução de Sinais
4.
Plant Physiol ; 185(3): 836-856, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793899

RESUMO

Deglycosylation is a key step in the activation of specialized metabolites involved in plant defense mechanisms. This reaction is notably catalyzed by ß-glucosidases of the glycosyl hydrolase 1 (GH1) family such as strictosidine ß-d-glucosidase (SGD) from Catharanthus roseus. SGD catalyzes the deglycosylation of strictosidine, forming a highly reactive aglycone involved in the synthesis of cytotoxic monoterpene indole alkaloids (MIAs) and in the crosslinking of aggressor proteins. By exploring C. roseus transcriptomic resources, we identified an alternative splicing event of the SGD gene leading to the formation of a shorter isoform of this enzyme (shSGD) that lacks the last 71-residues and whose transcript ratio with SGD ranges from 1.7% up to 42.8%, depending on organs and conditions. Whereas it completely lacks ß-glucosidase activity, shSGD interacts with SGD and causes the disruption of SGD multimers. Such disorganization drastically inhibits SGD activity and impacts downstream MIA synthesis. In addition, shSGD disrupts the metabolic channeling of downstream biosynthetic steps by hampering the recruitment of tetrahydroalstonine synthase in cell nuclei. shSGD thus corresponds to a pseudo-enzyme acting as a regulator of MIA biosynthesis. These data shed light on a peculiar control mechanism of ß-glucosidase multimerization, an organization common to many defensive GH1 members.


Assuntos
Processamento Alternativo/fisiologia , Catharanthus/metabolismo , Processamento Alternativo/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alcaloides de Vinca/metabolismo
5.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613530

RESUMO

Circuitries of signaling pathways integrate distinct hormonal and environmental signals, and influence development in plants. While a crosstalk between brassinosteroid (BR) and gibberellin (GA) signaling pathways has recently been established, little is known about other components engaged in the integration of the two pathways. Here, we provide supporting evidence for the role of HSP90 (HEAT SHOCK PROTEIN 90) in regulating the interplay of the GA and BR signaling pathways to control hypocotyl elongation of etiolated seedlings in Arabidopsis. Both pharmacological and genetic depletion of HSP90 alter the expression of GA biosynthesis and catabolism genes. Major components of the GA pathway, like RGA (REPRESSOR of ga1-3) and GAI (GA-INSENSITIVE) DELLA proteins, have been identified as physically interacting with HSP90. Interestingly, GA-promoted DELLA degradation depends on the ATPase activity of HSP90, and inhibition of HSP90 function stabilizes the DELLA/BZR1 (BRASSINAZOLE-RESISTANT 1) complex, modifying the expression of downstream transcriptional targets. Our results collectively reveal that HSP90, through physical interactions with DELLA proteins and BZR1, modulates DELLA abundance and regulates the expression of BZR1-dependent transcriptional targets to promote plant growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hipocótilo/metabolismo , Arabidopsis/metabolismo , Giberelinas/metabolismo , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
6.
New Phytol ; 229(4): 2288-2301, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33124697

RESUMO

Olive (Olea europaea) is an important crop in Europe, with high cultural, economic and nutritional significance. Olive oil flavor and quality depend on phenolic secoiridoids, but the biosynthetic pathway of these iridoids remains largely uncharacterized. We discovered two bifunctional cytochrome P450 enzymes, catalyzing the rare oxidative C-C bond cleavage of 7-epi-loganin to produce oleoside methyl ester (OeOMES) and secoxyloganin (OeSXS), both through a ketologanin intermediary. Although these enzymes are homologous to the previously reported Catharanthus roseus secologanin synthase (CrSLS), the substrate and product profiles differ. Biochemical assays provided mechanistic insights into the two-step OeOMES and CrSLS reactions. Model-guided mutations of OeOMES changed the product profile in a predictable manner, revealing insights into the molecular basis for this change in product specificity. Our results suggest that, in contrast to published hypotheses, in planta production of secoxy-iridoids is secologanin-independent. Notably, sequence data of cultivated and wild olives point to a relation between domestication and OeOMES expression. Thus, the discovery of this key biosynthetic gene suggests a link between domestication and secondary metabolism, and could potentially be used as a genetic marker to guide next-generation breeding programs.


Assuntos
Olea , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Europa (Continente) , Iridoides/análise , Olea/genética , Azeite de Oliva , Estresse Oxidativo , Melhoramento Vegetal
7.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445148

RESUMO

The gram-positive pathogenic bacterium Clavibacter michiganensis subsp. michiganensis (Cmm) causes bacterial canker disease in tomato, affecting crop yield and fruit quality. To understand how tomato plants respond, the dynamic expression profile of host genes was analyzed upon Cmm infection. Symptoms of bacterial canker became evident from the third day. As the disease progressed, the bacterial population increased in planta, reaching the highest level at six days and remained constant till the twelfth day post inoculation. These two time points were selected for transcriptomics. A progressive down-regulation of key genes encoding for components of the photosynthetic apparatus was observed. Two temporally separated defense responses were observed, which were to an extent interdependent. During the primary response, genes of the phenylpropanoid pathway were diverted towards the synthesis of monolignols away from S-lignin. In dicots, lignin polymers mainly consist of G- and S-units, playing an important role in defense. The twist towards G-lignin enrichment is consistent with previous findings, highlighting a response to generate an early protective barrier and to achieve a tight interplay between lignin recomposition and the primary defense response mechanism. Upon progression of Cmm infection, the temporal deactivation of phenylpropanoids coincided with the upregulation of genes that belong in a secondary response mechanism, supporting an elegant reprogramming of the host transcriptome to establish a robust defense apparatus and suppress pathogen invasion. This high-throughput analysis reveals a dynamic reorganization of plant defense mechanisms upon bacterial infection to implement an array of barriers preventing pathogen invasion and spread.


Assuntos
Regulação para Baixo/genética , Fotossíntese/genética , Imunidade Vegetal/genética , Imunidade Vegetal/imunologia , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Clavibacter/genética , Infecções por Bactérias Gram-Positivas/genética , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/microbiologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Fotossíntese/imunologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Transcriptoma/genética , Regulação para Cima/genética
8.
Plant Physiol ; 177(4): 1473-1486, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29934299

RESUMO

Lochnericine is a major monoterpene indole alkaloid (MIA) in the roots of Madagascar periwinkle (Catharanthus roseus). Lochnericine is derived from the stereoselective C6,C7-epoxidation of tabersonine and can be metabolized further to generate other complex MIAs. While the enzymes responsible for its downstream modifications have been characterized, those involved in lochnericine biosynthesis remain unknown. By combining gene correlation studies, functional assays, and transient gene inactivation, we identified two highly conserved P450s that efficiently catalyze the epoxidation of tabersonine: tabersonine 6,7-epoxidase isoforms 1 and 2 (TEX1 and TEX2). Both proteins are quite divergent from the previously characterized tabersonine 2,3-epoxidase and are more closely related to tabersonine 16-hydroxylase, involved in vindoline biosynthesis in leaves. Biochemical characterization of TEX1/2 revealed their strict substrate specificity for tabersonine and their inability to epoxidize 19-hydroxytabersonine, indicating that they catalyze the first step in the pathway leading to hörhammericine production. TEX1 and TEX2 displayed complementary expression profiles, with TEX1 expressed mainly in roots and TEX2 in aerial organs. Our results suggest that TEX1 and TEX2 originated from a gene duplication event and later acquired divergent, organ-specific regulatory elements for lochnericine biosynthesis throughout the plant, as supported by the presence of lochnericine in flowers. Finally, through the sequential expression of TEX1 and up to four other MIA biosynthetic genes in yeast, we reconstituted the 19-acetylhörhammericine biosynthetic pathway and produced tailor-made MIAs by mixing enzymatic modules that are naturally spatially separated in the plant. These results lay the groundwork for the metabolic engineering of tabersonine/lochnericine derivatives of pharmaceutical interest.


Assuntos
Catharanthus/metabolismo , Alcaloides Indólicos/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas de Plantas/metabolismo , Catharanthus/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , Engenharia Metabólica/métodos , Microrganismos Geneticamente Modificados , Oxigenases de Função Mista/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Alcaloides de Triptamina e Secologanina , Leveduras/genética , Leveduras/metabolismo
10.
Plant Physiol ; 174(3): 1371-1383, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28483880

RESUMO

Oleuropein, a terpene-derived glycosylated secoiridoid biosynthesized exclusively by members of the Oleaceae family, is involved in a two-component defense system comprising a ß-glucosidase that activates oleuropein into a toxic glutaraldehyde-like structure. Oleuropein and its deglycosylated derivatives have high pharmaceutical interest. In this study we determined that the in planta heterologous expressed OeGLU, an oleuropein-specific ß-glucosidase from olive (Olea europaea), had enzymatic kinetics similar to the olive native enzyme. The C terminus encompassing the nuclear localization signal sequesters the enzyme in the nucleus, and predetermines the protein-protein recognition and homodimerization. Biochemical analysis revealed that OeGLU is a homomultimer with high Mr In silico prediction modeling of the complex structure and bimolecular fluorescence complementation analyses revealed that the C terminus of OeGLU is essential for the proper assembly of an octameric form, a key conformational feature that determines the activity of the enzyme. Our results demonstrate that intrinsic characteristics of the OeGLU ensure separation from oleuropein and keep the dual-partner defensive system conditionally inactive. Upon cell destruction, the dual-partner defense system is activated and olive massively releases the arsenal of defense.


Assuntos
Núcleo Celular/enzimologia , Iridoides/química , Iridoides/metabolismo , Olea/enzimologia , Dobramento de Proteína , beta-Glucosidase/química , beta-Glucosidase/metabolismo , Simulação por Computador , Glicosilação , Glucosídeos Iridoides , Cinética , Sinais de Localização Nuclear , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade
12.
Plant Physiol ; 183(1): 13-14, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32385174

Assuntos
Populus , Sulfatos
13.
J Exp Bot ; 66(7): 2093-106, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25697790

RESUMO

Oleuropein, the major secoiridoid compound in olive, is involved in a sophisticated two-component defence system comprising a ß-glucosidase enzyme that activates oleuropein into a toxic glutaraldehyde-like structure. Although oleuropein deglycosylation studies have been monitored extensively, an oleuropein ß-glucosidase gene has not been characterized as yet. Here, we report the isolation of OeGLU cDNA from olive encoding a ß-glucosidase belonging to the defence-related group of terpenoid-specific glucosidases. In planta recombinant protein expression assays showed that OeGLU deglycosylated and activated oleuropein into a strong protein cross-linker. Homology and docking modelling predicted that OeGLU has a characteristic (ß/α)8 TIM barrel conformation and a typical construction of a pocket-shaped substrate recognition domain composed of conserved amino acids supporting the ß-glucosidase activity and non-conserved residues associated with aglycon specificity. Transcriptional analysis in various olive organs revealed that the gene was developmentally regulated, with its transcript levels coinciding well with the spatiotemporal patterns of oleuropein degradation and aglycon accumulation in drupes. OeGLU upregulation in young organs reflects its prominent role in oleuropein-mediated defence system. High gene expression during drupe maturation implies an additional role in olive secondary metabolism, through the degradation of oleuropein and reutilization of hydrolysis products.


Assuntos
Iridoides/metabolismo , Olea/enzimologia , beta-Glucosidase/metabolismo , Sequência de Bases , Frutas/enzimologia , Frutas/genética , Expressão Gênica , Hidrólise , Glucosídeos Iridoides , Iridoides/química , Dados de Sequência Molecular , Olea/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA , Terpenos/metabolismo , Transgenes , beta-Glucosidase/genética
14.
ACS Synth Biol ; 13(5): 1498-1512, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38635307

RESUMO

Monoterpene indole alkaloids (MIAs) make up a highly bioactive class of metabolites produced by a range of tropical and subtropical plants. The corynanthe-type MIAs are a stereochemically complex subclass with therapeutic potential against a large number of indications including cancer, psychotic disorders, and erectile dysfunction. Here, we report yeast-based cell factories capable of de novo production of corynanthe-type MIAs rauwolscine, yohimbine, tetrahydroalstonine, and corynanthine. From this, we demonstrate regioselective biosynthesis of 4 fluorinated derivatives of these compounds and de novo biosynthesis of 7-chlororauwolscine by coexpression of a halogenase with the biosynthetic pathway. Finally, we capitalize on the ability of these cell factories to produce derivatives of these bioactive scaffolds to establish a proof-of-principle drug discovery pipeline in which the corynanthe-type MIAs are screened for bioactivity on human drug targets, expressed in yeast. In doing so, we identify antagonistic and agonistic behavior against the human adrenergic G protein-coupled receptors ADRA2A and ADRA2B, and the serotonergic receptor 5HT4b, respectively. This study thus demonstrates a proto-drug discovery pipeline for bioactive plant-inspired small molecules based on one-pot biocatalysis of natural and new-to-nature corynanthe-type MIAs in yeast.


Assuntos
Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Humanos , Vias Biossintéticas , Ioimbina/metabolismo , Ioimbina/farmacologia , Alcaloides de Triptamina e Secologanina/metabolismo , Alcaloides Indólicos/metabolismo , Descoberta de Drogas/métodos
15.
Protoplasma ; 260(2): 607-624, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35947213

RESUMO

The medicinal plant Catharanthus roseus biosynthesizes many important drugs for human health, including the anticancer monoterpene indole alkaloids (MIAs) vinblastine and vincristine. Over the past decades, the continuous increase in pharmaceutical demand has prompted several research groups to characterize MIA biosynthetic pathways for considering future metabolic engineering processes of supply. In line with previous work suggesting that diversification can potentially occur at various steps along the vindoline branch, we were here interested in investigating the involvement of distinct isoforms of tabersonine-16-O-methyltransferase (16OMT) which plays a pivotal role in the MIA biosynthetic pathway. By combining homology searches based on the previously characterized 16OMT1, phylogenetic analyses, functional assays in yeast, and biochemical and in planta characterizations, we identified a second isoform of 16OMT, referred to as 16OMT2. 16OMT2 appears to be a multifunctional enzyme working on both MIA and flavonoid substrates, suggesting that a constrained evolution of the enzyme for accommodating the MIA substrate has probably occurred to favor the apparition of 16OMT2 from an ancestral specific flavonoid-O-methyltransferase. Since 16OMT1 and 16OMT2 displays a high sequence identity and similar kinetic parameters for 16-hydroxytabersonine, we postulate that 16OMT1 may result from a later 16OMT2 gene duplication accompanied by a continuous neofunctionalization leading to an almost complete loss of flavonoid O-methyltransferase activity. Overall, these results participate in increasing our knowledge on the evolutionary processes that have likely led to enzyme co-optation for MIA synthesis.


Assuntos
Alcaloides , Antineoplásicos , Catharanthus , Alcaloides/metabolismo , Regulação da Expressão Gênica de Plantas , Metiltransferases/genética , Metiltransferases/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética
16.
Methods Mol Biol ; 2505: 263-279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35732951

RESUMO

Functional genomics analyses in planta can be hampered in non-model plants that are recalcitrant to the genetic transformation such as the medicinal plant Catharanthus roseus (Apocynaceae). No stable transformation and regeneration of plantlets have been achieved with a high efficiency in this plant to date. In addition, while virus-mediated transient gene silencing has been reported a decade ago in C. roseus, tools for transient overexpression remain scarce. Here, we describe an efficient and reliable methodology for transiently overexpressing any gene of interest in C. roseus leaves. This protocol combines a vacuum-based Agroinfiltration approach and the high translational efficiency of a deconstructed virus-based binary vector (pEAQ-HT). The described methodology is robust, easy to perform, and results in high amount of transient expression in C. roseus. This protocol is expected to serve as valuable tool to enhance the in planta characterization of gene functions or even transiently knock-in novel enzymatic activities.


Assuntos
Catharanthus , Catharanthus/genética , Catharanthus/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Vetores Genéticos/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Vácuo
17.
Front Plant Sci ; 12: 671487, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539687

RESUMO

Specialized metabolism is an evolutionary answer that fortifies plants against a wide spectrum of (a) biotic challenges. A plethora of diversified compounds can be found in the plant kingdom and often constitute the basis of human pharmacopeia. Olive trees (Olea europaea) produce an unusual type of secoiridoids known as oleosides with promising pharmaceutical activities. Here, we transiently silenced oleuropein ß-glucosidase (OeGLU), an enzyme engaged in the biosynthetic pathway of secoiridoids in the olive trees. Reduction of OeGLU transcripts resulted in the absence of both upstream and downstream secoiridoids in planta, revealing a regulatory loop mechanism that bypasses the flux of precursor compounds toward the branch of secoiridoid biosynthesis. Our findings highlight that OeGLU could serve as a molecular target to regulate the bioactive secoiridoids in olive oils.

18.
Microb Biotechnol ; 14(6): 2693-2699, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34302444

RESUMO

The pharmaceutical industry faces a growing demand and recurrent shortages in many anticancer plant drugs given their extensive use in human chemotherapy. Efficient alternative strategies of supply of these natural products such as bioproduction by microorganisms are needed to ensure stable and massive manufacturing. Here, we developed and optimized yeast cell factories efficiently converting tabersonine to vindoline, a precursor of the major anticancer alkaloids vinblastine and vincristine. First, fine-tuning of heterologous gene copies restrained side metabolites synthesis towards vindoline production. Tabersonine to vindoline bioconversion was further enhanced through a rational medium optimization (pH, composition) and a sequential feeding strategy. Finally, a vindoline titre of 266 mg l-1 (88% yield) was reached in an optimized fed-batch bioreactor. This precursor-directed synthesis of vindoline thus paves the way towards future industrial bioproduction through the valorization of abundant tabersonine resources.


Assuntos
Antineoplásicos , Catharanthus , Humanos , Saccharomyces cerevisiae/genética , Vimblastina/análogos & derivados
19.
Methods Mol Biol ; 2172: 165-182, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32557369

RESUMO

Research on gene functions in non-model tree species is hampered by a number of difficulties such as time-consuming genetic transformation protocols and extended period for the production of healthy transformed offspring, among others. Virus-induced gene silencing (VIGS) is an alternative approach to transiently knock out an endogenous gene of interest (GOI) by the introduction of viral sequences encompassing a fragment of the GOI and to exploit the posttranscriptional gene silencing (PTGS) mechanism of the plant, thus triggering silencing of the GOI. Here we describe the successful application of Tobacco rattle virus (TRV)-mediated VIGS through agroinoculation of olive plantlets. This methodology is expected to serve as a fast tracking and powerful tool enabling researchers from diversified fields to perform functional genomic analyses in the olive tree.


Assuntos
Olea/genética , Oleaceae/genética , Vírus de Plantas/genética , Vírus de Plantas/patogenicidade , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Inativação Gênica/fisiologia , Olea/virologia , Oleaceae/virologia , Interferência de RNA
20.
Curr Opin Biotechnol ; 65: 17-24, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31841858

RESUMO

The discovery and supply of plant-derived anti-cancer compounds remain challenging given their low bioavailability and structural complexity. Reconstituting the pathways of these compounds in heterologous hosts is a promising solution; however, requires the complete elucidation of the biosynthetic genes involved and extensive metabolic engineering to optimise enzyme activity and metabolic flux. This review describes the current strategies and recent advancements in the production of these valuable therapeutic compounds, and highlights plant-derived immunomodulators as an emerging class of anti-cancer agents.


Assuntos
Antineoplásicos , Artemisininas , Vias Biossintéticas , Engenharia Metabólica , Plantas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa