Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Brain ; 143(4): 1220-1232, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32206776

RESUMO

CSF biomarkers, including total-tau, neurofilament light chain (NfL) and amyloid-ß, are increasingly being used to define and stage Alzheimer's disease. These biomarkers can be measured more quickly and less invasively in plasma and may provide important information for early diagnosis of Alzheimer's disease. We used stored plasma samples and clinical data obtained from 4444 non-demented participants in the Rotterdam study at baseline (between 2002 and 2005) and during follow-up until January 2016. Plasma concentrations of total-tau, NfL, amyloid-ß40 and amyloid-ß42 were measured using the Simoa NF-light® and N3PA assays. Associations between biomarker plasma levels and incident all-cause and Alzheimer's disease dementia during follow-up were assessed using Cox proportional-hazard regression models adjusted for age, sex, education, cardiovascular risk factors and APOE ε4 status. Moreover, biomarker plasma levels and rates of change over time of participants who developed Alzheimer's disease dementia during follow-up were compared with age and sex-matched dementia-free control subjects. During up to 14 years follow-up, 549 participants developed dementia, including 374 cases with Alzheimer's disease dementia. A log2 higher baseline amyloid-ß42 plasma level was associated with a lower risk of developing all-cause or Alzheimer's disease dementia, adjusted hazard ratio (HR) 0.61 [95% confidence interval (CI), 0.47-0.78; P < 0.0001] and 0.59 (95% CI, 0.43-0.79; P = 0.0006), respectively. Conversely, a log2 higher baseline plasma NfL level was associated with a higher risk of all-cause dementia [adjusted HR 1.59 (95% CI, 1.38-1.83); P < 0.0001] or Alzheimer's disease [adjusted HR 1.50 (95% CI, 1.26-1.78); P < 0.0001]. Combining the lowest quartile group of amyloid-ß42 with the highest of NfL resulted in a stronger association with all-cause dementia [adjusted HR 9.5 (95% CI, 2.3-40.4); P < 0.002] and with Alzheimer's disease [adjusted HR 15.7 (95% CI, 2.1-117.4); P < 0.0001], compared to the highest quartile group of amyloid-ß42 and lowest of NfL. Total-tau and amyloid-ß40 levels were not associated with all-cause or Alzheimer's disease dementia risk. Trajectory analyses of biomarkers revealed that mean NfL plasma levels increased 3.4 times faster in participants who developed Alzheimer's disease compared to those who remained dementia-free (P < 0.0001), plasma values for cases diverged from controls 9.6 years before Alzheimer's disease diagnosis. Amyloid-ß42 levels began to decrease in Alzheimer's disease cases a few years before diagnosis, although the decline did not reach significance compared to dementia-free participants. In conclusion, our study shows that low amyloid-ß42 and high NfL plasma levels are each independently and in combination strongly associated with risk of all-cause and Alzheimer's disease dementia. These data indicate that plasma NfL and amyloid-ß42 levels can be used to assess the risk of developing dementia in a non-demented population. Plasma NfL levels, although not specific, may also be useful in monitoring progression of Alzheimer's disease dementia.


Assuntos
Peptídeos beta-Amiloides/sangue , Biomarcadores/sangue , Demência/diagnóstico , Proteínas de Neurofilamentos/sangue , Proteínas tau/sangue , Idoso , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Estudos de Coortes , Demência/sangue , Diagnóstico Precoce , Feminino , Humanos , Masculino
2.
Eur J Epidemiol ; 36(7): 753-762, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34117979

RESUMO

The Human Immunomics Initiative (HII), a joint project between the Harvard T.H. Chan School of Public Health and the Human Vaccines Project (HVP), focuses on studying immunity and the predictability of immuneresponsiveness to vaccines in aging populations. This paper describes the hypotheses and methodological approaches of this new collaborative initiative. Central to our thinking is the idea that predictors of age-related non-communicable diseases are the same as predictors for infectious diseases like COVID-19 and influenza. Fundamental to our approach is to differentiate between chronological, biological and immune age, and to use existing large-scale population cohorts. The latter provide well-typed phenotypic data on individuals' health status over time, readouts of routine clinical biochemical biomarkers to determine biological age, and bio-banked plasma samples to deep phenotype humoral immune responses as biomarkers of immune age. The first phase of the program involves 1. the exploration of biological age, humoral biomarkers of immune age, and genetics in a large multigenerational cohort, and 2. the subsequent development of models of immunity in relation to health status in a second, prospective cohort of an aging population. In the second phase, vaccine responses and efficacy of licensed COVID-19 vaccines in the presence and absence of influenza-, pneumococcal- and pertussis vaccines routinely offered to elderly, will be studied in older aged participants of prospective population-based cohorts in different geographical locations who will be selected for representing distinct biological and immune ages. The HII research program is aimed at relating vaccine responsiveness to biological and immune age, and identifying aging-related pathways crucial to enhance vaccine effectiveness in aging populations.


Assuntos
Envelhecimento/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , COVID-19/diagnóstico , COVID-19/prevenção & controle , Protocolos Clínicos , Feminino , Nível de Saúde , Humanos , Imunidade Humoral , Masculino , Pessoa de Meia-Idade , Fenótipo , Desenvolvimento de Programas , Projetos de Pesquisa , Adulto Jovem
3.
Acta Neuropathol ; 137(5): 825-836, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30805666

RESUMO

Deposition of α-synuclein into Lewy bodies and Lewy neurites is the hallmark of Parkinson's disease (PD). It is hypothesized that α-synuclein pathology spreads by a "prion-like" mechanism (i.e., by seeded aggregation or templated misfolding). Therefore, various extracellular α-synuclein conformers and/or posttranslational modifications may serve as biomarkers of disease or potential targets for novel interventions. To explore whether the antibody repertoires of PD patients contain anti-α-synuclein antibodies that can potentially be used as markers or immunotherapy, we interrogated peripheral IgG+ memory B cells from PD patients for reactivity to α-synuclein. In total, ten somatically mutated antibodies were recovered, suggesting the presence of an ongoing antigen-driven immune response. The three antibodies that had the highest affinity to recombinant full-length α-synuclein, aSyn-323.1, aSyn-336.1 and aSyn-338.1, were characterized further and shown to recognize epitopes in the C terminus of α-synuclein with binding affinities between 0.3 and 2.8 µM. Furthermore, all three antibodies were able to neutralize the "seeding" of intracellular synuclein aggregates in an in vitro α-synuclein seeding assay. Finally, differential reactivities were observed for all three human anti-α-synuclein antibodies across tissue treatment conditions by immunohistochemistry. Our results suggest that the memory B-cell repertoire of PD patients might represent a potential source of biomarkers and therapies.


Assuntos
Anticorpos/metabolismo , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Doença de Parkinson/imunologia , alfa-Sinucleína/metabolismo , Idoso , Anticorpos/isolamento & purificação , Linfócitos B/imunologia , Células HEK293 , Humanos , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Pessoa de Meia-Idade , Mutação , Doença de Parkinson/patologia , Agregação Patológica de Proteínas/metabolismo
4.
J Virol ; 91(24)2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29046448

RESUMO

Influenza viruses of the H1N1, H2N2, and H3N2 subtypes have caused previous pandemics. H2 influenza viruses represent a pandemic threat due to continued circulation in wild birds and limited immunity in the human population. In the event of a pandemic, antiviral agents are the mainstay for treatment, but broadly neutralizing antibodies (bNAbs) may be a viable alternative for short-term prophylaxis or treatment. The hemagglutinin stem binding bNAbs CR6261 and CR9114 have been shown to protect mice from severe disease following challenge with H1N1 and H5N1 and with H1N1, H3N2, and influenza B viruses, respectively. Early studies with CR6261 and CR9114 showed weak in vitro activity against human H2 influenza viruses, but the in vivo efficacy against H2 viruses is unknown. Therefore, we evaluated these antibodies against human- and animal-origin H2 viruses A/Ann Arbor/6/1960 (H2N2) (AA60) and A/swine/MO/4296424/06 (H2N3) (Sw06). In vitro, CR6261 neutralized both H2 viruses, while CR9114 only neutralized Sw06. To evaluate prophylactic efficacy, mice were given CR6261 or CR9114 and intranasally challenged 24 h later with lethal doses of AA60 or Sw06. Both antibodies reduced mortality, weight loss, airway inflammation, and pulmonary viral load. Using engineered bNAb variants, antibody-mediated cell cytotoxicity reporter assays, and Fcγ receptor-deficient (Fcer1g-/-) mice, we show that the in vivo efficacy of CR9114 against AA60 is mediated by Fcγ receptor-dependent mechanisms. Collectively, these findings demonstrate the in vivo efficacy of CR6261 and CR9114 against H2 viruses and emphasize the need for in vivo evaluation of bNAbs.IMPORTANCE bNAbs represent a strategy to prevent or treat infection by a wide range of influenza viruses. The evaluation of these antibodies against H2 viruses is important because H2 viruses caused a pandemic in 1957 and could cross into humans again. We demonstrate that CR6261 and CR9114 are effective against infection with H2 viruses of both human and animal origin in mice, despite the finding that CR9114 did not display in vitro neutralizing activity against the human H2 virus. These findings emphasize the importance of in vivo evaluation and testing of bNAbs.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Influenza A Subtipo H2N2/imunologia , Influenza Humana/prevenção & controle , Testes de Neutralização/normas , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/genética , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/administração & dosagem , Reações Cruzadas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vírus da Influenza A Subtipo H2N2/patogenicidade , Influenza Humana/imunologia , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Receptores de IgG/deficiência , Receptores de IgG/genética , Receptores de IgG/imunologia
5.
Acta Neuropathol ; 133(5): 767-783, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28341999

RESUMO

Several reports have described the presence of antibodies against Alzheimer's disease-associated hyperphosphorylated forms of tau in serum of healthy individuals. To characterize the specificities that can be found, we interrogated peripheral IgG+ memory B cells from asymptomatic blood donors for reactivity to a panel of phosphorylated tau peptides using a single-cell screening assay. Antibody sequences were recovered, cloned, and expressed as full-length IgGs. In total, 52 somatically mutated tau-binding antibodies were identified, corresponding to 35 unique clonal families. Forty-one of these antibodies recognize epitopes in the proline-rich and C-terminal domains, and binding of 26 of these antibodies is strictly phosphorylation dependent. Thirteen antibodies showed inhibitory activity in a P301S lysate seeded in vitro tau aggregation assay. Two such antibodies, CBTAU-7.1 and CBTAU-22.1, which bind to the proline-rich and C-terminal regions of tau, respectively, were characterized in more detail. CBTAU-7.1 recognizes an epitope that is similar to that of murine anti-PHF antibody AT8, but has different phospho requirements. Both CBTAU-7.1 and CBTAU-22.1 detect pathological tau deposits in post-mortem brain tissue. CBTAU-7.1 reveals a similar IHC distribution pattern as AT8, immunostaining (pre)tangles, threads, and neuritic plaques. CBTAU-22.1 shows selective detection of neurofibrillary changes by IHC. Taken together, these results suggest the presence of an ongoing antigen-driven immune response against tau in healthy individuals. The wide range of specificities to tau suggests that the human immune repertoire may contain antibodies that can serve as biomarkers or be exploited for therapy.


Assuntos
Doença de Alzheimer/imunologia , Epitopos/imunologia , Memória Imunológica/imunologia , Emaranhados Neurofibrilares/imunologia , Proteínas tau/metabolismo , Adolescente , Adulto , Idoso , Sequência de Aminoácidos/fisiologia , Anticorpos Monoclonais/imunologia , Sítios de Ligação , Epitopos/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Emaranhados Neurofibrilares/patologia , Fosforilação , Adulto Jovem
6.
Proc Natl Acad Sci U S A ; 111(1): 445-50, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24335589

RESUMO

The discovery and characterization of broadly neutralizing antibodies (bnAbs) against influenza viruses have raised hopes for the development of monoclonal antibody (mAb)-based immunotherapy and the design of universal influenza vaccines. Only one human bnAb (CR8020) specifically recognizing group 2 influenza A viruses has been previously characterized that binds to a highly conserved epitope at the base of the hemagglutinin (HA) stem and has neutralizing activity against H3, H7, and H10 viruses. Here, we report a second group 2 bnAb, CR8043, which was derived from a different germ-line gene encoding a highly divergent amino acid sequence. CR8043 has in vitro neutralizing activity against H3 and H10 viruses and protects mice against challenge with a lethal dose of H3N2 and H7N7 viruses. The crystal structure and EM reconstructions of the CR8043-H3 HA complex revealed that CR8043 binds to a site similar to the CR8020 epitope but uses an alternative angle of approach and a distinct set of interactions. The identification of another antibody against the group 2 stem epitope suggests that this conserved site of vulnerability has great potential for design of therapeutics and vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Influenza A/química , Animais , Anticorpos/química , Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Cromatografia em Gel , Ensaio de Imunoadsorção Enzimática , Epitopos/química , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Humanos , Memória Imunológica , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica , Modelos Moleculares , Conformação Molecular , Especificidade da Espécie
7.
Virol J ; 12: 210, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26643820

RESUMO

BACKGROUND: Influenza virus infections are responsible for significant morbidity worldwide and therefore it remains a high priority to develop more broadly protective vaccines. Adjuvation of current seasonal influenza vaccines has the potential to achieve this goal. METHODS: To assess the immune potentiating properties of Matrix-M™, mice were immunized with virosomal trivalent seasonal vaccine adjuvated with Matrix-M™. Serum samples were isolated to determine the hemagglutination inhibiting (HAI) antibody titers against vaccine homologous and heterologous strains. Furthermore, we assess whether adjuvation with Matrix-M™ broadens the protective efficacy of the virosomal trivalent seasonal vaccine against vaccine homologous and heterologous influenza viruses. RESULTS: Matrix-M™ adjuvation enhanced HAI antibody titers and protection against vaccine homologous strains. Interestingly, Matrix-M™ adjuvation also resulted in HAI antibody titers against heterologous influenza B strains, but not against the tested influenza A strains. Even though the protection against heterologous influenza A was induced by the adjuvated vaccine, in the absence of HAI titers the protection was accompanied by severe clinical scores and body weight loss. In contrast, in the presence of heterologous HAI titers full protection against the heterologous influenza B strain without any disease symptoms was obtained. CONCLUSION: The results of this study emphasize the promising potential of a Matrix-M™-adjuvated seasonal trivalent virosomal influenza vaccine. Adjuvation of trivalent virosomal vaccine does not only enhance homologous protection, but in addition induces protection against heterologous strains and thus provides overall more potent and broad protective immunity.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacinas contra Influenza/imunologia , Orthomyxoviridae/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Anticorpos Antivirais/sangue , Peso Corporal , Feminino , Testes de Inibição da Hemaglutinação , Imunidade Heteróloga , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Camundongos Endogâmicos BALB C , Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/prevenção & controle , Índice de Gravidade de Doença , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética
8.
Sci Rep ; 14(1): 3818, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360813

RESUMO

Avian A(H5N1) influenza virus poses an elevated zoonotic threat to humans, and no pharmacological products are currently registered for fast-acting pre-exposure protection in case of spillover leading to a pandemic. Here, we show that an epitope on the stem domain of H5 hemagglutinin is highly conserved and that the human monoclonal antibody CR9114, targeting that epitope, potently neutralizes all pseudotyped H5 viruses tested, even in the rare case of substitutions in its epitope. Further, intranasal administration of CR9114 fully protects mice against A(H5N1) infection at low dosages, irrespective of pre-existing immunity conferred by the quadrivalent seasonal influenza vaccine. These data provide a proof-of-concept for broad, pre-exposure protection against a potential future pandemic using the intranasal administration route. Studies in humans should assess if autonomous administration of a broadly-neutralizing monoclonal antibody is safe and effective and can thus contribute to pandemic preparedness.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vacinas contra Influenza , Influenza Humana , Humanos , Animais , Camundongos , Anticorpos Monoclonais , Anticorpos Neutralizantes , Administração Intranasal , Anticorpos Antivirais , Epitopos , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Camundongos Endogâmicos BALB C
9.
Sci Rep ; 11(1): 15929, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354164

RESUMO

Application of biological age as a measure of an individual´s health status offers new perspectives into extension of both lifespan and healthspan. While algorithms predicting mortality and most aging-related morbidities have been reported, the major shortcoming has been an inability to predict dementia. We present a community-based cohort study of 1930 participants with a mean age of 72 years and a follow-up period of over 7 years, using two variants of a phenotypic blood-based algorithm that either excludes (BioAge1) or includes (BioAge2) neurofilament light chain (NfL) as a neurodegenerative marker. BioAge1 and BioAge2 predict dementia equally well, as well as lifespan and healthspan. Each one-year increase in BioAge1/2 was associated with 11% elevated risk (HR 1.11; 95%CI 1.08-1.14) of mortality and 7% elevated risk (HR 1.07; 95%CI 1.05-1.09) of first morbidities. We additionally tested the association of microRNAs with age and identified 263 microRNAs significantly associated with biological and chronological age alike. Top differentially expressed microRNAs based on biological age had a higher significance level than those based on chronological age, suggesting that biological age captures aspects of aging signals at the epigenetic level. We conclude that accelerated biological age for a given age is a predictor of major age-related morbidity, including dementia, among healthy elderly.


Assuntos
Demência/patologia , Envelhecimento Saudável/fisiologia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Biomarcadores , Estudos de Coortes , Feminino , Nível de Saúde , Humanos , Longevidade , Masculino , MicroRNAs/genética , Prognóstico
10.
Nat Commun ; 12(1): 5877, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620860

RESUMO

Several COVID-19 vaccines have recently gained authorization for emergency use. Limited knowledge on duration of immunity and efficacy of these vaccines is currently available. Data on other coronaviruses after natural infection suggest that immunity to SARS-CoV-2 might be short-lived, and preliminary evidence indicates waning antibody titers following SARS-CoV-2 infection. In this work, we model the relationship between immunogenicity and protective efficacy of a series of Ad26 vectors encoding stabilized variants of the SARS-CoV-2 Spike protein in rhesus macaques and validate the analyses by challenging macaques 6 months after immunization with the Ad26.COV2.S vaccine candidate that has been selected for clinical development. We show that Ad26.COV2.S confers durable protection against replication of SARS-CoV-2 in the lungs that is predicted by the levels of Spike-binding and neutralizing antibodies, indicating that Ad26.COV2.S could confer durable protection in humans and immunological correlates of protection may enable the prediction of durability of protection.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Ad26COVS1 , Animais , Feminino , Células HEK293 , Humanos , Imunidade Humoral , Modelos Logísticos , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Macaca mulatta , Masculino , Nariz/imunologia , Nariz/virologia , SARS-CoV-2/fisiologia , Replicação Viral/fisiologia
11.
J Infect Dis ; 200(12): 1870-3, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19911992

RESUMO

New strategies to prevent and treat influenza virus infections are urgently needed. A recently discovered class of monoclonal antibodies (mAbs) neutralizing an unprecedented spectrum of influenza virus subtypes may have the potential for future use in humans. Here, we assess the efficacies of CR6261, which is representative of this novel class of mAbs, and oseltamivir in mice. We show that a single injection with 15 mg/kg CR6261 outperforms a 5-day course of treatment with oseltamivir (10 mg/kg/day) with respect to both prophylaxis and treatment of lethal H5N1 and H1N1 infections. These results justify further preclinical evaluation of broadly neutralizing mAbs against influenza virus for the prevention and treatment of influenza virus infections.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Antivirais/uso terapêutico , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/prevenção & controle , Oseltamivir/uso terapêutico , Animais , Peso Corporal , Feminino , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Índice de Gravidade de Doença , Análise de Sobrevida
12.
J Vis Exp ; (150)2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31498318

RESUMO

The human antibody repertoire represents a largely untapped source of potential therapeutic antibodies and useful biomarkers. While current computational methods, such as next generation sequencing (NGS), yield enormous sets of data on the antibody repertoire at the sequence level, functional data is required to identify which sequences are relevant for a particular antigen or set of antigens. Here, we describe a method to identify and recover individual antigen-specific antibodies from peripheral blood mononuclear cells (PBMCs) from a human blood donor. This method utilizes an initial enrichment of mature B cells and requires a combination of phenotypic cell markers and fluorescently-labeled protein to isolate IgG memory B cells via flow cytometry. The heavy and light chain variable regions are then cloned and re-screened. Although limited to the memory B cell compartment, this method takes advantage of flow cytometry to interrogate millions of B cells and returns paired heavy and light chain sequences from a single cell in a format ready for expression and confirmation of specificity. Antibodies recovered with this method can be considered for therapeutic potential, but can also link specificity and function with bioinformatic approaches to assess the B cell repertoire within individuals.


Assuntos
Anticorpos/isolamento & purificação , Linfócitos B/fisiologia , Citometria de Fluxo/métodos , Leucócitos Mononucleares/fisiologia , Especificidade de Anticorpos , Antígenos/imunologia , Linfócitos B/imunologia , Biomarcadores , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Proteínas Luminescentes/química
13.
Sci Rep ; 9(1): 4735, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30894620

RESUMO

Epitope characterization is critical for elucidating the mechanism of action of drug candidates. However, traditional high-resolution epitope mapping techniques are not well suited for screening numerous drug candidates recognizing a similar target. Here, we use Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS) to explore the conformational impact of diverse drug molecules binding on Hemagglutinin (HA), the major surface antigen of influenza viruses. We optimized a semi-automated HDX-MS workflow to systematically probe distantly related HA subtypes in complex with 4 different drug candidates, ranging from a monoclonal antibody to a small synthetic peptide. This fast, cost-effective HDX-MS epitope mapping approach accurately determined the main antigenic site in all cases. Moreover, our studies reveal distinct changes in the local conformational dynamics of HA associated to the molecular mechanism of neutralization, establishing a marker for broad anti-HA activity. Taken together, these findings highlight the potential for HDX-MS epitope mapping-based screening to identify promising candidates against HA at early stages of drug discovery.


Assuntos
Mapeamento de Epitopos/métodos , Hemaglutininas/metabolismo , Espectrometria de Massa com Troca Hidrogênio-Deutério/métodos , Influenza Humana/tratamento farmacológico , Descoberta de Drogas/métodos , Hemaglutininas/imunologia , Humanos , Preparações Farmacêuticas/metabolismo , Ligação Proteica
14.
Science ; 363(6431)2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30846569

RESUMO

Recent characterization of broadly neutralizing antibodies (bnAbs) against influenza virus identified the conserved hemagglutinin (HA) stem as a target for development of universal vaccines and therapeutics. Although several stem bnAbs are being evaluated in clinical trials, antibodies are generally unsuited for oral delivery. Guided by structural knowledge of the interactions and mechanism of anti-stem bnAb CR6261, we selected and optimized small molecules that mimic the bnAb functionality. Our lead compound neutralizes influenza A group 1 viruses by inhibiting HA-mediated fusion in vitro, protects mice against lethal and sublethal influenza challenge after oral administration, and effectively neutralizes virus infection in reconstituted three-dimensional cell culture of fully differentiated human bronchial epithelial cells. Cocrystal structures with H1 and H5 HAs reveal that the lead compound recapitulates the bnAb hotspot interactions.


Assuntos
Anticorpos Neutralizantes/química , Materiais Biomiméticos/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Influenza Humana/prevenção & controle , Piperazinas/farmacologia , Piridinas/farmacologia , Tetrazóis/farmacologia , Inibidores de Proteínas Virais de Fusão/farmacologia , Internalização do Vírus/efeitos dos fármacos , Administração Oral , Animais , Materiais Biomiméticos/administração & dosagem , Materiais Biomiméticos/farmacocinética , Brônquios/virologia , Células Cultivadas , Cães , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Células Madin Darby de Rim Canino , Camundongos , Piperazinas/administração & dosagem , Piperazinas/farmacocinética , Piridinas/administração & dosagem , Piridinas/farmacocinética , Mucosa Respiratória/virologia , Tetrazóis/administração & dosagem , Tetrazóis/farmacocinética , Inibidores de Proteínas Virais de Fusão/administração & dosagem , Inibidores de Proteínas Virais de Fusão/farmacocinética
15.
J Vis Exp ; (141)2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30531722

RESUMO

Aggregation of tau protein and formation of paired helical filaments is a hallmark of Alzheimer's disease and other tauopathies. Compared to other proteins associated with neurodegenerative diseases, the reported in vitro aggregation kinetics for tau protein are less consistent presenting a relatively high variability. Here we describe the development of an in vitro aggregation assay that mimics the expected steps associated with tau misfolding and aggregation in vivo. The assay uses the longest tau isoform (huTau441) which contains both N-terminal acidic inserts as well as four microtubule binding domains (MBD). The in vitro aggregation is triggered by addition of heparin and followed continuously by thioflavin T fluorescence in a 96 well microplate format. The tau aggregation assay is highly reproducible between different wells, experimental runs and batches of the protein. The aggregation leads to tau PHF-like morphology which is very efficient in seeding the formation of de novo fibrillar structures. In addition to its application in studying the mechanism of tau misfolding and aggregation, the current assay is a robust tool for screening drugs that could interfere with the pathogenesis of tau.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Agregados Proteicos/fisiologia , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Benzotiazóis/análise , Benzotiazóis/metabolismo , Heparina/análise , Heparina/metabolismo , Humanos , Ligação Proteica/fisiologia , Dobramento de Proteína , Isoformas de Proteínas/análise , Isoformas de Proteínas/metabolismo , Proteínas tau/análise
16.
J Vis Exp ; (141)2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30474638

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative condition in which aggregated tau and amyloid proteins accumulate in the brain causing neuronal dysfunction which eventually leads to cognitive decline. Hyperphosphorylated tau aggregates in the neuron are believed to cause most of the pathology associated with AD. These aggregates are assumed to be released into the extracellular compartment and taken up by adjacent healthy neurons where they induce further tau aggregation. This "prion-like" spreading can be interrupted by antibodies capable of binding and "neutralizing" extracellular tau aggregates as shown in preclinical mouse models of AD. One of the proposed mechanisms by which therapeutic antibodies reduce pathology is antibody-mediated uptake and clearance of pathological aggregated forms of tau by microglia. Here, we describe a quantitative cell-based assay to assess tau uptake by microglia. This assay uses the mouse microglial cell line BV-2, allows for high specificity, low variability and medium throughput. Data generated with this assay can contribute to a better characterization of anti-tau antibody effector functions.


Assuntos
Doença de Alzheimer/patologia , Microglia/metabolismo , Proteínas tau/metabolismo , Humanos , Microglia/citologia
17.
Structure ; 26(12): 1626-1634.e4, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30318466

RESUMO

Aggregation of the hyperphosphorylated protein tau into neurofibrillary tangles and neuropil threads is a hallmark of Alzheimer disease (AD). Identification and characterization of the epitopes recognized by anti-tau antibodies might shed light on the molecular mechanisms of AD pathogenesis. Here we report on the biochemical and structural characterization of a tau-specific monoclonal antibody CBTAU-24.1, which was isolated from the human memory B cell repertoire. Immunohistochemical staining with CBTAU-24.1 specifically detects pathological tau structures in AD brain samples. The crystal structure of CBTAU-24.1 Fab with a phosphorylated tau peptide revealed recognition of a unique epitope (Ser235-Leu243) in the tau proline-rich domain. Interestingly, the antibody can bind tau regardless of phosphorylation state of its epitope region and also recognizes both monomeric and paired helical filament tau irrespective of phosphorylation status. This human anti-tau antibody and its unique epitope may aid in development of diagnostics and/or therapeutic AD strategies.


Assuntos
Doença de Alzheimer/diagnóstico , Anticorpos Monoclonais/metabolismo , Epitopos de Linfócito B/metabolismo , Proteínas tau/química , Doença de Alzheimer/metabolismo , Anticorpos Monoclonais/química , Encéfalo/metabolismo , Linhagem Celular , Cristalografia por Raios X , Epitopos de Linfócito B/química , Células HEK293 , Humanos , Modelos Moleculares , Fosforilação , Conformação Proteica , Proteínas tau/metabolismo
18.
Acta Neuropathol Commun ; 6(1): 59, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30001207

RESUMO

Aggregation of tau protein and spreading of tau aggregates are pivotal pathological processes in a range of neurological disorders. Accumulating evidence suggests that immunotherapy targeting tau may be a viable therapeutic strategy. We have previously described the isolation of antibody CBTAU-22.1 from the memory B-cell repertoire of healthy human donors. CBTAU-22.1 was shown to specifically bind a disease-associated phosphorylated epitope in the C-terminus of tau (Ser422) and to be able to inhibit the spreading of pathological tau aggregates from P301S spinal cord lysates in vitro, albeit with limited potency. Using a combination of rational design and random mutagenesis we have derived a variant antibody with improved affinity while maintaining the specificity of the parental antibody. This affinity improved antibody showed greatly enhanced potency in a cell-based immunodepletion assay using paired helical filaments (PHFs) derived from human Alzheimer's disease (AD) brain tissue. Moreover, the affinity improved antibody limits the in vitro aggregation propensity of full length tau species specifically phosphorylated at position 422 produced by employing a native chemical ligation approach. Together, these results indicate that in addition to being able to inhibit the spreading of pathological tau aggregates, the matured antibody can potentially also interfere with the nucleation of tau which is believed to be the first step of the pathogenic process. Finally, the functionality in a P301L transgenic mice co-injection model highlights the therapeutic potential of human antibody dmCBTAU-22.1.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Anticorpos/farmacologia , Encéfalo/metabolismo , Serina/metabolismo , Proteínas tau/imunologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Animais , Afinidade de Anticorpos/efeitos dos fármacos , Autopsia , Encéfalo/patologia , Relação Dose-Resposta a Droga , Epitopos/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Força Atômica , Pessoa de Meia-Idade , Modelos Moleculares , Mutagênese , Mutação/genética , Fosforilação/fisiologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Agregação Patológica de Proteínas/terapia
19.
Acta Neuropathol Commun ; 6(1): 43, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855358

RESUMO

Misfolding and aggregation of tau protein are closely associated with the onset and progression of Alzheimer's Disease (AD). By interrogating IgG+ memory B cells from asymptomatic donors with tau peptides, we have identified two somatically mutated VH5-51/VL4-1 antibodies. One of these, CBTAU-27.1, binds to the aggregation motif in the R3 repeat domain and blocks the aggregation of tau into paired helical filaments (PHFs) by sequestering monomeric tau. The other, CBTAU-28.1, binds to the N-terminal insert region and inhibits the spreading of tau seeds and mediates the uptake of tau aggregates into microglia by binding PHFs. Crystal structures revealed that the combination of VH5-51 and VL4-1 recognizes a common Pro-Xn-Lys motif driven by germline-encoded hotspot interactions while the specificity and thereby functionality of the antibodies are defined by the CDR3 regions. Affinity improvement led to improvement in functionality, identifying their epitopes as new targets for therapy and prevention of AD.


Assuntos
Linfócitos B/metabolismo , Imunoglobulina G/farmacologia , Cadeias Pesadas de Imunoglobulinas/metabolismo , Cadeias Leves de Imunoglobulina/metabolismo , Proteínas tau/imunologia , Proteínas tau/metabolismo , Adolescente , Adulto , Idoso , Especificidade de Anticorpos , Linfócitos B/efeitos dos fármacos , Cristalização , Relação Dose-Resposta a Droga , Feminino , Humanos , Epitopos Imunodominantes/metabolismo , Masculino , Microglia/metabolismo , Microscopia de Força Atômica , Pessoa de Meia-Idade , Modelos Moleculares , Dados de Sequência Molecular , Agregados Proteicos , Adulto Jovem
20.
Front Immunol ; 7: 399, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27746785

RESUMO

Interactions with receptors for the Fc region of IgG (FcγRs) have been shown to contribute to the in vivo protection against influenza A viruses provided by broadly neutralizing antibodies (bnAbs) that bind to the viral hemagglutinin (HA) stem. In particular, Fc-mediated antibody-dependent cellular cytotoxicity (ADCC) has been shown to contribute to protection by stem-binding bnAbs. Fc-mediated effector functions appear not to contribute to protection provided by strain-specific HA head-binding antibodies. We used a panel of anti-stem and anti-head influenza A and B monoclonal antibodies with identical human IgG1 Fc domains and investigated their ability to mediate ADCC-associated FcγRIIIa activation. Antibodies which do not interfere with sialic acid binding of HA can mediate FcγRIIIa activation. However, the FcγRIIIa activation was inhibited when a mutant HA, unable to bind sialic acids, was used. Antibodies which block sialic acid receptor interactions of HA interfered with FcγRIIIa activation. The inhibition of FcγRIIIa activation by HA head-binding and sialic acid receptor-blocking antibodies was confirmed in plasma samples of H5N1 vaccinated human subjects. Together, these results suggest that in addition to Fc-FcγR binding, interactions between HA and sialic acids on immune cells are required for optimal Fc-mediated effector functions by anti-HA antibodies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa