Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Dermatol ; 30(7): 887-896, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33657662

RESUMO

Genetic skin diseases, also known as genodermatoses, are inherited disorders affecting skin and constitute a large and heterogeneous group of diseases. While genodermatoses are rare with the prevalence rate of less than 1 in 50,000 - 200,000, they frequently occur at birth or early in life and are generally chronic, severe, and could be life-threatening. The quality of life of patients and their families are severely compromised by the negative psychosocial impact of disease, physical manifestations, and the lack or loss of autonomy. Currently, there are no curative treatments for these conditions. Ex vivo gene modification therapy that involves modification or correction of mutant genes in patients' cells in vitro and then transplanted back to patients to restore functional gene expression has being developed for genodermatoses. In this review, the ex vivo gene modification therapy strategies for genodermatoses are reviewed, focusing on current advances in gene modification and correction in patients' cells and delivery of genetically modified cells to patients with discussions on gene therapy trials which have been performed in this area.


Assuntos
Edição de Genes , Terapia Genética , Dermatopatias Genéticas/terapia , Humanos , Queratinócitos
2.
Nucleic Acids Res ; 47(11): 5634-5647, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31006810

RESUMO

Resistance to androgen receptor (AR)-targeted therapies in prostate cancer (PC) is a major clinical problem. A key mechanism of treatment resistance in advanced PC is the generation of alternatively spliced forms of the AR termed AR variants (AR-Vs) that are refractory to targeted agents and drive tumour progression. Our understanding of how AR-Vs function is limited due to difficulties in distinguishing their discriminate activities from full-length AR (FL-AR). Here we report the development of a novel CRISPR-derived cell line which is a derivative of CWR22Rv1 cells, called CWR22Rv1-AR-EK, that has lost expression of FL-AR, but retains all endogenous AR-Vs. From this, we show that AR-Vs act unhindered by loss of FL-AR to drive cell growth and expression of androgenic genes. Global transcriptomics demonstrate that AR-Vs drive expression of a cohort of DNA damage response genes and depletion of AR-Vs sensitises cells to ionising radiation. Moreover, we demonstrate that AR-Vs interact with PARP1 and PARP2 and are dependent upon their catalytic function for transcriptional activation. Importantly, PARP blockade compromises expression of AR-V-target genes and reduces growth of CRPC cell lines suggesting a synthetic lethality relationship between AR-Vs and PARP, advocating the use of PARP inhibitors in AR-V positive PC.


Assuntos
Sistemas CRISPR-Cas , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Algoritmos , Linhagem Celular Tumoral , Proliferação de Células , Dano ao DNA , Reparo do DNA , Ensaios de Seleção de Medicamentos Antitumorais , Técnicas Genéticas , Humanos , Lentivirus , Masculino , Receptores Androgênicos/biossíntese , Análise de Sequência de RNA , Transcriptoma
3.
Oncogene ; 38(28): 5700-5724, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31043708

RESUMO

Androgen receptor (AR) signalling is a key prostate cancer (PC) driver, even in advanced 'castrate-resistant' disease (CRPC). To systematically identify microRNAs (miRs) modulating AR activity in lethal disease, hormone-responsive and -resistant PC cells expressing a luciferase-based AR reporter were transfected with a miR inhibitor library; 78 inhibitors significantly altered AR activity. Upon validation, miR-346, miR-361-3p and miR-197 inhibitors markedly reduced AR transcriptional activity, mRNA and protein levels, increased apoptosis, reduced proliferation, repressed EMT, and inhibited PC migration and invasion, demonstrating additive effects with AR inhibition. Corresponding miRs increased AR activity through a novel and anti-dogmatic mechanism of direct association with AR 6.9 kb 3'UTR and transcript stabilisation. In addition, miR-346 and miR-361-3p modulation altered levels of constitutively active AR variants, and inhibited variant-driven PC cell proliferation, so may contribute to persistent AR signalling in CRPC in the absence of circulating androgens. Pathway analysis of AGO-PAR-CLIP-identified miR targets revealed roles in DNA replication and repair, cell cycle, signal transduction and immune function. Silencing these targets, including tumour suppressors ARHGDIA and TAGLN2, phenocopied miR effects, demonstrating physiological relevance. MiR-346 additionally upregulated the oncogene, YWHAZ, which correlated with grade, biochemical relapse and metastasis in patients. These AR-modulatory miRs and targets correlated with AR activity in patient biopsies, and were elevated in response to long-term enzalutamide treatment of patient-derived CRPC xenografts. In summary, we identified miRs that modulate AR activity in PC and CRPC, via novel mechanisms, and may represent novel PC therapeutic targets.


Assuntos
MicroRNAs/fisiologia , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/fisiologia , Regiões 3' não Traduzidas , Elementos Antissenso (Genética) , Benzamidas , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Humanos , Masculino , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Invasividade Neoplásica , Metástase Neoplásica , Nitrilas , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Neoplasias da Próstata/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa