Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Cancer ; 153(4): 867-881, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37139608

RESUMO

We aimed to study mRNA levels and prognostic impact of all 15 human kallikrein-related peptidases (KLKs) and their targets, proteinase-activated receptors (PARs), in surgically treated prostate cancer (PCa). Seventy-nine patients with localized grade group 2-4 PCas represented aggressive cases, based on metastatic progression during median follow-up of 11 years. Eighty-six patients with similar baseline characteristics, but no metastasis during follow-up, were assigned as controls. Transcript counts were detected with nCounter technology. KLK12 protein expression was investigated with immunohistochemistry. The effects of KLK12 and KLK15 were studied in LNCaP cells using RNA interference. KLK3, -2, -4, -11, -15, -10 and -12 mRNA, in decreasing order, were expressed over limit of detection (LOD). The expression of KLK2, -3, -4 and -15 was decreased and KLK12 increased in aggressive cancers, compared to controls (P < .05). Low KLK2, -3 and -15 expression was associated with short metastasis-free survival (P < .05) in Kaplan-Meier analysis. PAR1 and -2 were expressed over LOD, and PAR1 expression was higher, and PAR2 lower, in aggressive cases than controls. Together, KLKs and PARs improved classification of metastatic and lethal disease over grade, pathological stage and prostate-specific antigen combined, in random forest analyses. Strong KLK12 immunohistochemical staining was associated with short metastasis-free and PCa-specific survival in Kaplan-Meier analysis (P < .05). Knock-down of KLK15 reduced colony formation of LNCaP cells grown on Matrigel basement membrane preparation. These results support the involvement of several KLKs in PCa progression, highlighting, that they may serve as prognostic PCa biomarkers.


Assuntos
Neoplasias da Próstata , Receptor PAR-1 , Masculino , Humanos , Prognóstico , Receptor PAR-1/genética , Calicreínas/genética , Calicreínas/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/metabolismo , Antígeno Prostático Específico , RNA Mensageiro/genética
2.
IUBMB Life ; 75(6): 493-513, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36598826

RESUMO

Since the proposition of the pro-invasive activity of proteolytic enzymes over 70 years ago, several roles for proteases in cancer progression have been established. About half of the 473 active human proteases are expressed in the prostate and many of the most well-characterized members of this enzyme family are regulated by androgens, hormones essential for development of prostate cancer. Most notably, several kallikrein-related peptidases, including KLK3 (prostate-specific antigen, PSA), the most well-known prostate cancer marker, and type II transmembrane serine proteases, such as TMPRSS2 and matriptase, have been extensively studied and found to promote prostate cancer progression. Recent findings also suggest a critical role for proteases in the development of advanced and aggressive castration-resistant prostate cancer (CRPC). Perhaps the most intriguing evidence for this role comes from studies showing that the protease-activated transmembrane proteins, Notch and CDCP1, are associated with the development of CRPC. Here, we review the roles of proteases in prostate cancer, with a special focus on their regulation by androgens.


Assuntos
Peptídeo Hidrolases , Neoplasias da Próstata , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Humanos , Animais , Peptídeo Hidrolases/sangue , Peptídeo Hidrolases/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Biomarcadores Tumorais/sangue
3.
BMC Cancer ; 18(1): 850, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143015

RESUMO

BACKGROUND: Tamoxifen treatment of estrogen receptor (ER)-positive breast cancer reduces mortality by 31%. However, over half of advanced ER-positive breast cancers are intrinsically resistant to tamoxifen and about 40% will acquire the resistance during the treatment. METHODS: In order to explore mechanisms underlying endocrine therapy resistance in breast cancer and to identify new therapeutic opportunities, we created tamoxifen-resistant breast cancer cell lines that represent the luminal A or the luminal B. Gene expression patterns revealed by RNA-sequencing in seven tamoxifen-resistant variants were compared with their isogenic parental cells. We further examined those transcriptomic alterations in a publicly available patient cohort. RESULTS: We show that tamoxifen resistance cannot simply be explained by altered expression of individual genes, common mechanism across all resistant variants, or the appearance of new fusion genes. Instead, the resistant cell lines shared altered gene expression patterns associated with cell cycle, protein modification and metabolism, especially with the cholesterol pathway. In the tamoxifen-resistant T-47D cell variants we observed a striking increase of neutral lipids in lipid droplets as well as an accumulation of free cholesterol in the lysosomes. Tamoxifen-resistant cells were also less prone to lysosomal membrane permeabilization (LMP) and not vulnerable to compounds targeting the lipid metabolism. However, the cells were sensitive to disulfiram, LCS-1, and dasatinib. CONCLUSION: Altogether, our findings highlight a major role of LMP prevention in tamoxifen resistance, and suggest novel drug vulnerabilities associated with this phenotype.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Metabolismo dos Lipídeos/genética , Lipídeos/biossíntese , Tamoxifeno/farmacologia , Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Reprogramação Celular/genética , Colesterol/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Receptor alfa de Estrogênio/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lipídeos/genética , Lisossomos/genética , Células MCF-7 , Transcriptoma/genética , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa