Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 9(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121146

RESUMO

Rapid development of antibiotic resistance in bacteria is a critical public health problem in the world. One of the main routes of resistance development is the transfer of genes containing antibiotic resistance cassettes. Gene transfer can be done through horizontal transfer of genes: transduction, conjugation, and transformation. Many factors in the environment influence these processes, and one of them is the action of metal oxide nanoparticles (MONPs), which can appear in the milieu through both biological synthesis and the release of engineered nanomaterial. In this study, the effect of AlOOH, CuO, Fe3O4, TiO2, and ZnO MONPs on the transformation (heat shock transformation) of bacteria Escherichia coli K12, and the conjugation between E. coli cc118 and E. coli Nova Blue were studied. The MONPs were synthesized by one method and fully characterized. ZnO nanoparticles (NPs) have significantly increased the efficiency of transformation (more than 9-fold), while the other NPs have reduced it to 31 times (TiO2 NPs). AlOOH NPs increased the number of transconjugants more than 1.5-fold, while CuO and Fe3O4 NPs did not have a significant effect on transformation and conjugation. Thus, the data shows that different types of MONPs can enhance or inhibit different gene transfer mechanisms, affecting the spread of antibiotic resistance genes.

2.
Int J Biol Macromol ; 161: 891-897, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32553974

RESUMO

The lipopolysaccharide (LPS) of Herbaspirillum frisingense GSF30T (HfGSF30), a non-pathogenic diazotrophic endobiont, was isolated by phenol-water extraction from bacterial cells and was characterized by chemical analyses and SDS PAGE. The O-specific polysaccharide (OPS, O-antigen), obtained by mild acid hydrolysis of the LPS, was examined by sugar and methylation analysis, along with 1H and 13C NMR spectroscopy, including 2D 1H,1H COSY, 1H,1H TOCSY, 1H,1H ROESY, 1H,13C HSQC, and 1H,13C HMBC experiments. The OPS was found to consist of branched tetrasaccharide repeating units of the following structure: [Formula: see text] This structure is unique among the known bacterial polysaccharide structures. Analysis of the HfGSF30 genome showed that it contained a set of sequentially arranged operons (presumably a cluster of genes) associated with the O-antigen. Amino acid sequence analysis using the BLAST program demonstrated the specificity of this putative cluster for Herbaspirillum spp. The genes responsible for the biosynthesis of the OPS of HfGSF30 were dispersed in the genome, constituting small operons. A putative O-antigen gene cluster of HfGSF30 was identified and found to be consistent with the OPS structure.


Assuntos
Desoxiaçúcares/genética , Herbaspirillum/genética , Lipopolissacarídeos/genética , Antígenos O/genética , Polissacarídeos Bacterianos/genética , Configuração de Carboidratos , Hidrólise , Espectroscopia de Ressonância Magnética/métodos , Metilação , Óperon/genética
3.
Ultrason Sonochem ; 68: 105198, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32593966

RESUMO

Nowadays celiac disease is becoming more common. It is the autonomic genetic disease that is accompanied by damage to the intestines due to a reaction to eating some proteins. People who are suffering from celiac disease cannot eat food containing gluten, including dough made from gluten-containing seeds. But the gluten-free dough has commonly bad rheological properties and cannot be used for automatic molding the dumplings. In this article, we propose the ultrasonic-assisted technology to fabricate the gluten-free dough with improved rheological properties acceptable for automatic molding of the dumplings. Application of ultrasonic treatment at a frequency of 35 kHz during the dough preparation leads to the homogenization of the dough structure and changing the rheological properties of the dough. The ultrasound induces mechanical, physical and chemical/biochemical changes of the dough components through cavitation. The sonication causes a doubled dough volume increase followed by an additional mass yield of the dumplings equal 2-10% per kilogram of dough. Besides extra beneficial economic effect, our technology provides an additional sterilization effect of the fabricated dough.


Assuntos
Farinha/análise , Manipulação de Alimentos/métodos , Ondas Ultrassônicas , Automação , Temperatura Alta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa