Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 25(7): e202300668, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38282140

RESUMO

Absorption and emission spectra of single crystals of 2,3-dichloroathracene (23DCA) and 23DCA dispersed in n-nonane matrix were studied at 5 K. Singlet and triplet excitonic bands in the crystal were estimated to be at about 415 nm and at wavelengths shorter than 700 nm, respectively. Thus, from the spectroscopic point of view, these crystals satisfy all criteria for a transparent and rigid matrix for low temperature optical studies of single molecules of dibenzoterrylene, which have their purely electronic S0→S1 transition at around 785 nm. Quantum-chemistry calculations were used to analyze the spectra.

2.
Chemphyschem ; 25(6): e202300881, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38206192

RESUMO

Single molecules, embedded inside a well-defined insertion site of a single-crystalline host matrix, are sensitive probes of electric field via the induced Stark shift on their lifetime-limited electronic transition. Though the response of molecules to electric field has been shown to be relatively homogeneous, crystal symmetry allows for several, spectroscopically-indistinguishable, orientations of the net permanent dipole moment between the ground and excited state - the dipole vector - and this is problematic for measuring field orientation and magnitude. In this work, we measure for each terrylene molecule, embedded inside a new host matrix, the dipole vector independently by an electric field that we can rotate in the plane of the crystal. This single crystal host matrix, called [1]BenzoThieno[3,2-b]BenzoThiophene, induces a moderate symmetry breaking of the embedded centrosymmetric terrylene molecule, and gives rise to a net dipole moment of 0.28±0.09 Debye. Based on quantum chemistry calculations we propose an insertion site that best matches the experimental findings.

3.
Phys Chem Chem Phys ; 26(30): 20690-20700, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39041807

RESUMO

Four donor-acceptor-donor compounds consisting of 9,9-dimethyl-9,10-dihydroacridine donors differently linked to a benzothiadiazole acceptor were designed using DFT calculations and synthesized, namely 4,7-bis(4-(9,9-dimethyl-9,10-dihydroacridine)phenyl)benzo[c][1,2,5]thiadiazole (1), 4,7-bis(2,5-dimethyl-4-(9,9-dimethyl-9,10-dihydroacridine)phenyl)benzo[c][1,2,5]thiadiazole (2), 4,7-bis(3,5-di(9,9-dimethyl-9,10-dihydroacridine)phenyl)benzo[c][1,2,5]thiadiazole (3), and 4-(3,5-di(9,9-dimethyl-9,10-dihydroacridine)phenyl)-7-(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (4). As predicted theoretically, all studied compounds were electrochemically active both in the reduction as well as in the oxidation modes. They underwent one electron quasi-reversible reduction. Oxidation of 1 and 2 involved a two electron process transforming them into dications and carrying out, in parallel, their dimerization. Oxidation of 3 and 4 resulted in their oligomerization (polymerization). The electrochemically determined ionisation potentials (IP) of 1-4 were similar, covering a narrow range of 5.28-5.33 eV and were consistent with DFT calculations. Larger differences were found for experimentally determined electron affinity (EA) values, being significantly lower for 2 (|EA| = 2.59 eV) as compared to 1, 3 and 4 whose |EA| values were higher by 0.15-0.25 eV, again consistent with DFT calculations. DFT calculations predict positive values of ΔE(S1-T1) for all compounds i.e. in the range of 0.18 eV to 0.43 eV for 1, 3 and 4 and a significantly lower value for 2 (0.06 eV), indicating a possible RISC process in this case. DFT calculations of ΔE(S1-T2) lead to negative and very small values for 2-4 implying a possible involvement of higher lying triplets in the generation of singlet excitons. The investigated derivatives exhibited fluorescence in the orange-red spectral range (550-770 nm) and were strongly dependent on the solvent polarity. The highest PLQY value of 37% was measured for 1 in toluene. The PLQY values significantly improved upon deoxygenation of the studied solutions. Solid state samples also exhibited higher PLQY values as compared to those determined for DCM solutions. These findings were rationalized by partial suppression of the vibrationally induced emission quenching in the solid state due to the intermolecular interaction confinement.

4.
Chemphyschem ; 23(2): e202100890, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35044715

RESUMO

The front cover artwork is provided by Prof. Michel Orrit's group at the University of Leiden, The Netherlands. The image shows the structures of the dibenzothiophene host molecule and perylene guest molecule with its fluorescence emission spectrum on the bottom. The symbols and arrows refer to the reverse intersystem crossing (rISC) observed for single perylene molecules in dibenzothiophene host crystals, which typically have a needle shape and are shown in the background. Read the full text of the Article at 10.1002/cphc.202100679.

5.
Chemphyschem ; 23(2): e202100679, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34780094

RESUMO

Intersystem crossing to the long-lived metastable triplet state is often a strong limitation on fluorescence brightness of single molecules, particularly for perylene in various matrices. In this paper, we report on a strong excitation-induced reverse intersystem crossing (rISC), a process where single perylene molecules in a dibenzothiophene matrix recover faster from the triplet state, turning into bright emitters at saturated excitation powers. With a detailed study of single-molecule fluorescence autocorrelations, we quantify the effect of rISC. The intrinsic lifetimes found for the two effective triplet states (8.5±0.4 ms and 64±12 ms) become significantly shorter, into the sub-millisecond range, as the excitation power increases and fluorescence brightness is ultimately enhanced at least fourfold. Our results are relevant for the understanding of triplet state manipulation of single-molecule quantum emitters and for markedly improving their brightness.


Assuntos
Perileno , Fluorescência , Tiofenos
6.
J Chem Phys ; 156(10): 104301, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35291792

RESUMO

Vibrational levels of the electronic ground states in dye molecules have not been previously explored at a high resolution in solid matrices. We present new spectroscopic measurements on single polycyclic aromatic molecules of dibenzoterrylene embedded in an organic crystal made of para-dichlorobenzene. To do this, we use narrow-band continuous-wave lasers and combine spectroscopy methods based on fluorescence excitation and stimulated emission depletion to assess individual vibrational linewidths in the electronic ground state at a resolution of ∼30 MHz dictated by the linewidth of the electronic excited state. In this fashion, we identify several exceptionally narrow vibronic levels with linewidths down to values around 2 GHz. Additionally, we sample the distribution of vibronic wavenumbers, relaxation rates, and Franck-Condon factors, in both the electronic ground and excited states for a handful of individual molecules. We discuss various noteworthy experimental findings and compare them with the outcome of density functional theory calculations. The highly detailed vibronic spectra obtained in our work pave the way for studying the nanoscopic local environment of single molecules. The approach also provides an improved understanding of the vibrational relaxation mechanisms in the electronic ground state, which may help create long-lived vibrational states for applications in quantum technology.

7.
Chemistry ; 27(48): 12388-12394, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34101270

RESUMO

Acenes, polyaromatic hydrocarbons composed of linearly fused benzene rings have received immense attention due to their performance as semiconductors in organic optoelectronic applications. Their appealing physicochemical properties, such as extended delocalization, high charge carrier mobilities, narrow HOMO-LOMO gaps and partially radical character in the ground state make them very attractive targets for many potential applications. However, the intrinsic synthetic challenges of unsubstituted members such as high reactivity and poor solubility are still limiting factors for their wider exploitation. Herein, we report a simple general synthesis of a new family of angularly fused acenoacenes with improved stability compared to their isoelectronic linear counterparts. The synthesis and comprehensive characterization of pentacenopentacene, pentacenohexacene and hexacenohexacene, with lengths between decacene and dodecacene, are disclosed.

8.
Phys Chem Chem Phys ; 23(2): 1156-1164, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33350404

RESUMO

The role of electron acceptor/donor group substitution on the photophysical properties of tris(salicylideneanilines) (TSANs) was investigated. These compounds were synthesised and characterised through spectroscopic techniques including steady state absorption and emission spectroscopies. Their photochemical reaction mechanisms and properties were explored with the aid of ab initio methods of quantum chemistry. The obtained results allow us to verify the dependence of multiple emission bands on the substitution of electron donating and accepting groups to the tris(salicylideneaniline) core. The results also stress the differences in phosphorescence behaviour of TSANs for which this type of emission has not been reported so far.

9.
J Chem Phys ; 155(3): 034504, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34293905

RESUMO

Absorption, fluorescence, and phosphorescence spectra of single crystals of [1]benzothieno[3,2-b][1]benzothiophene (BTBT) and BTBT dispersed in frozen n-nonane, n-hexadecane, and dichloromethane matrices were studied at 5 K. Observation of a new absorption band and related changes in the fluorescence to phosphorescence intensity ratio, when the concentration of BTBT in the matrix increased above 10-4M, indicated the presence of BTBT aggregates. Quantum-chemistry calculations performed for the simplest aggregate, isolated dimer, showed that its structure is similar to the "herringbone" element in the BTBT crystal unit cell and the lowest electronic excited singlet state of the dimer has the intermolecular charge-transfer character. A qualitatively different nature of this state in dimers and in crystals, when compared with the situation in BTBT monomer [locally excited (LE) state], is associated with a decrease in the intersystem crossing yield. The structured vibronic structure of phosphorescence spectra in the studied systems indicated LE character of the triplet states.

10.
Angew Chem Int Ed Engl ; 60(14): 7752-7758, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33460518

RESUMO

Starphenes are attractive compounds due to their characteristic physicochemical properties that are inherited from acenes, making them interesting compounds for organic electronics and optics. However, the instability and low solubility of larger starphene homologs make their synthesis extremely challenging. Herein, we present a new strategy leading to pristine [16]starphene in preparative scale. Our approach is based on a synthesis of a carbonyl-protected starphene precursor that is thermally converted in a solid-state form to the neat [16]starphene, which is then characterised with a variety of analytical methods, such as 13 C CP-MAS NMR, TGA, MS MALDI, UV/Vis and FTIR spectroscopy. Furthermore, high-resolution STM experiments unambiguously confirm its expected structure and reveal a moderate electronic delocalisation between the pentacene arms. Nucleus-independent chemical shifts NICS(1) are also calculated to survey its aromatic character.

11.
Phys Chem Chem Phys ; 22(16): 8522-8534, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32301447

RESUMO

Three new donor-acceptor (D-A) compounds, positional isomers of phenoxazine-substituted acridone, namely 1-phenoxazine-N-hexylacridone (o-A), 2-phenoxazine-N-hexylacridone (m-A) and 3-phenoxazine-N-hexylacridone (p-A), were synthesized. The synthesized compounds showed interesting, isomerism-dependent electrochemistry. Their oxidation was reversible and their potential (given vs. Fc/Fc+) changed from 0.21 V for o-A to 0.36 V for p-A. In contrast, their reduction was irreversible, isomerism-independent and occurred at rather low potentials (ca. -2.25 to -2.28 V). The electrochemical results led to the following values of the ionization potentials (IPs) and electron affinities (EAs): 5.03 eV and -2.14 eV, 5.15 eV and -2.20 eV, and 5.20 eV and -2.28 eV for o-A, m-A and p-A, respectively. The experimentally obtained values were in very good agreement with those predicted by DFT calculations. All three isomers readily formed single crystals suitable for their structure determination. o-A and p-A crystallized in P1[combining macron] and P21/n space groups, respectively, with one molecule per asymmetric unit, while m-A crystallized in the P21/c space group with two molecules in the asymmetric unit accompanied by disordered solvent molecules. The UV-vis spectra of the studied compounds were isomerism and solvent independent, yielding absorption maxima in the vicinity of 400 nm. Their photoluminescence spectra, in turn, strongly depended on isomerism and the used solvent showing smaller Stokes shifts for the emission bands registered in toluene as compared to the corresponding bands measured in dichloromethane. The photoluminescence quantum yields (φ) were systematically higher for toluene solutions reaching the highest value of 20% for p-A. For all three isomers studied, stationary and time-resolved spectroscopic investigations carried out in toluene at different temperatures revealed spectral features indicating a contribution of thermally activated delayed fluorescence (TADF) to the observed spectroscopic behaviour. The measured photoluminescence quantum yields (φ) were higher for solid state films of pure compounds and for their dispersions in solid matrices (zeonex) than those recorded for toluene and dichloromethane solutions of the studied phenoxazine-N-hexylacridone isomers. The obtained experimental spectroscopic and structural data were confronted with theoretical predictions based on DFT calculations.

12.
Chemphyschem ; 20(1): 55-61, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30427119

RESUMO

Absorption and fluorescence from single molecules can be tuned by applying an external electric field - a phenomenon known as the Stark effect. A linear Stark effect is associated to a lack of centrosymmetry of the guest in the host matrix. Centrosymmetric guests can display a linear Stark effect in disordered matrices, but the response of individual guest molecules is often relatively weak and non-uniform, with a broad distribution of the Stark coefficients. Here we introduce a novel single-molecule host-guest system, dibenzoterrylene (DBT) in 2,3-dibromonaphthalene (DBN) crystal. Fluorescent DBT molecules show excellent spectral stability with a large linear Stark effect, of the order of 1.5 GHz/kVcm-1 , corresponding to an electric dipole moment change of around 2 D. Remarkably, when the electric field is aligned with the a crystal axis, nearly all DBT molecules show either positive or negative Stark shifts with similar absolute values. These results are consistent with quantum chemistry calculations. Those indicate that DBT substitutes three DBN molecules along the a-axis, giving rise to eight equivalent embedding sites, related by the three glide planes of the orthorhombic crystal. The static dipole moment of DBT molecules is created by host-induced breaking of the inversion symmetry. This new host-guest system is promising for applications that require a high sensitivity of fluorescent emitters to electric fields, for example to probe weak electric fields.

13.
J Phys Chem A ; 122(35): 6985-6996, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30092643

RESUMO

Single crystals of 4-(diisopropylamino)benzonitrile (DIABN) undergo an intramolecular charge transfer (ICT) reaction in the excited singlet state. At 300 K, the fluorescence consists of emissions from the locally excited (LE) and from the ICT state. Upon cooling to 5 K, the ICT fluorescence intensity gradually decreases relative to that of the LE emission and is absent below 60 K. With crystalline 4-(dimethylamino)benzonitrile (DMABN), in contrast, only LE emission is found over the entire range from 300 to 5 K. The phosphorescence spectra of the DIABN and the DMABN crystals do not present any evidence for an additional ICT emission, showing that ICT does not occur in the triplet state. An activation energy Ea of ∼4 kJ/mol is determined for the LE → ICT reaction of DIABN crystals, from the temperature dependence of the fluorescence decay times τ2 and τ1. Ea is attributed to changes in the molecular conformation of DIABN other than a full rotation of the large diisopropylamino group with respect to the benzonitrile moiety. In a comparison with crystal and solution data, literature results from transient vibrational and absorption spectra are discussed and it is concluded that they cannot be employed to favor the TICT (perpendicular twist) over the PICT (planar) model for DIABN and DMABN.

14.
J Chem Phys ; 147(11): 114302, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28938800

RESUMO

Highly terrylene doped single crystals of p-terphenyl, obtained by co-sublimation of both components, showed bright spots in the confocal fluorescence images. Polarization of the fluorescence excitation spectra, blinking and bleaching, and saturation behavior allowed us to attribute them to single molecules of terrylene anomalously embedded between two neighbor layers of the host crystal, in the (a,b) plane. Such an orientation of terrylene molecules results in much more efficient absorption and collection of the fluorescence photons than in the case of previously investigated molecules embedded in the substitution sites. The above conclusion was supported by quantum chemistry calculations. We postulate that the kind of doping considered in this work should be possible in other molecular crystals where the host molecules are organized in a herringbone pattern.

15.
Org Biomol Chem ; 14(29): 7046-52, 2016 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-27367169

RESUMO

New synthetic methods leading towards π-expanded heterocycles are sought after mainly due to their promising opto-electronic properties. Subjecting 1,5,9,10-tetramethoxyanthracene to the modern Duff reaction conditions led to the formation of a compound possessing the 2-azabenzoanthrone (dibenzo[de,h]isoquinolin-7-on) skeleton instead of the expected dialdehyde. This non-typical course of reaction can be rationalized by the double electrophilic aromatic substitution at two neighboring electron-rich positions of anthracene followed by oxidation of the resulting intermediate to form a pyridine ring. Optical studies supported by the quantum chemistry calculations indicated the lack of excited-state intramolecular proton transfer (ESIPT); for energy reasons, only one tautomeric form, with a hydrogen atom bonded to one of the two nearby oxygen atoms, was populated in the electronic ground S0 and in the excited S1 states. Nonradiative depopulation of the S1 state proceeded via internal conversion stimulated by the presence of the low frequency vibrational modes. Our serendipitous discovery represents the most complex case of rearrangement of aromatic compounds under Duff reaction conditions and could help to design analogous processes. At the same time this is the simplest method for the synthesis of derivatives of 2-azabenzoanthrone.

16.
Org Biomol Chem ; 14(6): 2025-33, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26762673

RESUMO

A novel non-centrosymmetric π-expanded diketopyrrolopyrrole was designed and synthesized. Strategic placement of tert-butyl groups at the periphery of a diketopyrrolopyrrole allowed us to selectively fuse one moiety via tandem Friedel-Crafts-dehydration reactions, resulting in a non-centrosymmetric dye. The structure of the dye was confirmed by X-ray crystallography, revealing that it contains a nearly flat arrangement of four fused rings. Extensive photophysical studies of this new functional dye revealed that the intensity of its emission strongly depends on solvent polarity, which is typical for dipolar chromophores. In non-polar solvents, the fluorescence quantum yield is high whereas in polar solvents such as MeOH, it is 12%. However, upon two-photon excitation the compound behaves like a centrosymmetric dye, showing a two-photon absorption maximum at significantly shorter wavelengths than twice the wavelength of the one-photon absorption maximum.

17.
Chemphyschem ; 16(16): 3500-10, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26337041

RESUMO

A pyrazoline derivative, 3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (DCNP), is studied by using optical spectroscopy methods in several solvents at room and at low temperatures. The DCNP molecule reveals a complex photophysics behavior, which is sensitive to solvent polarity, proticity, temperature and viscosity and arises from the presence of two rotational degrees of freedom of the dicyanovinyl group--the torsion around the double C=C bond and the s-trans-s-cis isomerization around the single C-C bond--that differently behave in various environmental conditions. The fluorescence yield of a few percent and sub-nanosecond decay times observed at room temperature make the compound useful for optical studies of liquid environments. The proticity of polar solvents can be detected with two-exponential fluorescence decays. At low temperatures, DCNP can be used as solvent viscosity or temperature fluorescent sensor.

18.
Phys Chem Chem Phys ; 17(14): 8945-50, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25746202

RESUMO

Photophysics of π-expanded analogs of imidazo[1,2-a]pyridine, a well-known heterocyclic compound, has been experimentally and theoretically studied. Two regioisomeric systems differing only in the arrangement of the benzene ring have shown different optical properties (electronic transition energies, fluorescence quantum yields and decay times). DFT calculations have been in agreement with experimental results. Low fluorescence quantum yields have been attributed to the S1→ T2 intersystem crossing channel. Additional computations predict architectures which should possess higher fluorescence quantum yields.

19.
J Phys Chem A ; 119(34): 9051-8, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26241697

RESUMO

The photophysical studies of two phenols, derivatives of 3-hydroxybenzo[c]coumarin, were performed in n-nonane matrix at 5 K. Unstructured fluorescence spectrum of the derivative bearing a salicylaldehyde moiety, whose onset is shifted by ca. 3000 cm(-1) to lower energy in respect to that of absorption, and short decay time of this emission (0.75 ns) suggested the occurrence of excited-state intramolecular proton transfer (ESIPT). The experimental results were interpreted with the aid of quantum chemistry calculations performed with the DFT and TDDFT/B3LYP/6-31++G(d,p) methods.

20.
Chem Soc Rev ; 43(4): 1029-43, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24190080

RESUMO

We review recent progress in characterizing and understanding the photophysics of single molecules in condensed matter, mostly at cryogenic temperatures. We discuss the central role of the triplet state in limiting the number of useful host-guest systems, notably a new channel, intermolecular intersystem crossing. Another important limitation to the use of single molecules is their photo-reactivity, leading to blinking of the fluorescence signal, and eventually to its loss by photo-bleaching. These processes are at the heart of modern super-resolution schemes. We then examine some of the new host-guest systems recently discovered following these general principles, and the mechanisms of spectral diffusion and dephasing that they have revealed. When charges are injected into organic conductors, they get trapped and influence single molecules via the local fields they create in the material, and via their coupling to localized vibrations. Understanding these processes is necessary for better control of spectral diffusion and dephasing of single molecules. We finally conclude by giving some outlook on future directions of this fascinating field.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa