Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 12(19): 4968-79, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20411191

RESUMO

The properties of the three lowest singlet electronic states (ground, (1)L(b), and (1)L(a) states) of indole (C(8)H(7)N) have been calculated with second-order approximate coupled-cluster theory (CC2) within the resolution-of-the-identity approximation. Refined electronic energies at the CC2 optimized structures and transition dipole moments were calculated using a density functional theory multi-reference configuration-interaction (DFT/MRCI) approach. Structures, energies, and dipole moments are reported for all three states and compared to experimental values. From the optimized structures and calculated transition dipole moments, we predict that pure (1)L(b) bands will have positive signs for both the axis reorientation angle theta(T) and the angle theta of the transition dipole moment with respect to the inertial a axis. For (1)L(a) bands the signs of both angles will be reversed. Vibronically coupled bands can exhibit opposite signs for theta and theta(T). The absorption and emission spectra of indole are calculated based on the Franck-Condon Herzberg-Teller approximation using numerical transition dipole moment derivatives at the DFT/MRCI level of theory. Implications for the experimentally observed vibronic spectra are discussed. Predictions are made for rotationally resolved spectra of various rovibronic bands. A conical intersection, connecting the (1)L(b) and (1)L(a) states, which can be accessed to varying extents via different Herzberg-Teller active modes is found approximately 2000 cm(-1) above the (1)L(b) minimum.


Assuntos
Elétrons , Indóis/química , Simulação por Computador , Teoria Quântica , Vibração
2.
J Phys Chem A ; 113(11): 2456-66, 2009 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-19231889

RESUMO

The vibronic spectrum of tryptamine has been studied in a molecular beam up to an energy of 930 cm(-1) above the S(0)-S(1) electronic origin. Rotationally resolved electronic spectra reveal a rotation of the transition dipole moment direction from (1)L(b) to (1)L(a) beginning about 400 cm(-1) above the (1)L(b) origin. In this region, vibronic bands which appear as single bands at low resolution contain rotational structure from more than one vibronic transition. The number of these transitions closely tracks the total vibrational state density in the (1)L(b) electronic state as a function of internal energy. Dispersed fluorescence spectra show distinct spectroscopic signatures attributable to the (1)L(b) and (1)L(a) character of the mixed excited-state wave functions. The data set is used to extrapolate to a (1)L(a) origin about 400 cm(-1) above the (1)L(b) origin. DFT-MRCI calculations locate a conical intersection between these two states at about 900 cm(-1) above the L(a) origin, whose structure is located along a tuning coordinate which is close to a linear interpolation between the two excited-state geometries. Along the branching coordinate, there is no barrier from (1)L(a) to (1)L(b). A two-tier model for the vibronic coupling is proposed.

3.
Phys Chem Chem Phys ; 8(2): 228-35, 2006 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-16482265

RESUMO

The structure of benzimidazole has been determined in the electronic ground and excited states using rotationally resolved electronic spectroscopy. The rovibronic spectra of four isotopomers and subsequently the structure of benzimidazole have been automatically assigned and fitted using a genetic algorithm based fitting strategy. The lifetimes of the deuterated isotopomers have been shown to depend on the position of deuteration. The angle of the transition dipole moment with the inertial a-axis could be determined to be -30 degrees. Structures and transition dipole moment orientation have been calculated at various levels of theory and were compared to the experimental results.


Assuntos
Algoritmos , Benzimidazóis/química , Simulação por Computador , Elétrons , Micro-Ondas , Modelos Moleculares , Estrutura Molecular , Análise Espectral
4.
Chemphyschem ; 7(6): 1241-9, 2006 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-16680792

RESUMO

The rotationally resolved UV spectra of the electronic origins of five isotopomers of the phenol dimer have been measured. The complex spectra are analyzed using a fitting strategy based on a genetic algorithm. The intermolecular geometry parameters have been determined from the inertial parameters for both electronic states and compared to the results of ab initio calculations. In the electronic ground state, a larger hydrogen-bond length than in the ab initio calculations is found together with a smaller tilt angle of the aromatic rings, which shows a more pronounced dispersion interaction. In the electronically excited state, the hydrogen-bond length decreases, as has been found for other hydrogen-bonded clusters of phenol, and the two aromatic rings are tilted less toward each other.

5.
J Chem Phys ; 123(22): 224311, 2005 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-16375480

RESUMO

The change of the 7-azaindole-water cluster structure upon electronic excitation was determined by a Franck-Condon analysis of the intensities in the fluorescence emission spectra obtained via excitation of five different vibronic bands. A total of 105 emission band intensities were fitted, together with the changes of rotational constants of one isotopomer. These rotational constants have been obtained from a fit to the rovibronic contour of the cluster. The geometry change upon electronic excitation to the pi pi* state can be described by a strong and asymmetric shortening of the hydrogen bonds and a deformation of both the pyridine and the pyrrole rings of 7-azaindole. The resulting geometry changes are interpreted on the basis of ab initio calculations.

6.
J Chem Phys ; 121(6): 2598-610, 2004 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-15281858

RESUMO

The S(1) state geometries of benzonitrile, p-cyanophenol, o-cyanophenol, chlorobenzene, and p-chlorophenol were determined by Franck-Condon simulations and a fit of the geometry to the vibronic intensities and effective rotational constants in the harmonic limit based on ab initio force constants.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa