Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 228(1): 46-58, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-36801946

RESUMO

BACKGROUND: Data on cellular immune responses in persons with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection following vaccination are limited. The evaluation of these patients with SARS-CoV-2 breakthrough infections may provide insight into how vaccinations limit the escalation of deleterious host inflammatory responses. METHODS: We conducted a prospective study of peripheral blood cellular immune responses to SARS-CoV-2 infection in 21 vaccinated patients, all with mild disease, and 97 unvaccinated patients stratified based on disease severity. RESULTS: We enrolled 118 persons (aged 50 years [SD 14.5 years], 52 women) with SARS-CoV-2 infection. Compared to unvaccinated patients, vaccinated patients with breakthrough infections had a higher percentage of antigen-presenting monocytes (HLA-DR+), mature monocytes (CD83+), functionally competent T cells (CD127+), and mature neutrophils (CD10+); and lower percentages of activated T cells (CD38+), activated neutrophils (CD64+), and immature B cells (CD127+CD19+). These differences widened with increased disease severity in unvaccinated patients. Longitudinal analysis showed that cellular activation decreased over time but persisted in unvaccinated patients with mild disease at 8-month follow-up. CONCLUSIONS: Patients with SARS-CoV-2 breakthrough infections exhibit cellular immune responses that limit the progression of inflammatory responses and suggest mechanisms by which vaccination limits disease severity. These data may have implications for developing more effective vaccines and therapies. Clinical Trials Registration. NCT04401449.


Assuntos
COVID-19 , Humanos , Feminino , SARS-CoV-2 , Infecções Irruptivas , Estudos Prospectivos , Vacinação
2.
Am J Physiol Lung Cell Mol Physiol ; 324(6): L783-L798, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37039367

RESUMO

NR2F2 is expressed in endothelial cells (ECs) and Nr2f2 knockout produces lethal cardiovascular defects. In humans, reduced NR2F2 expression is associated with cardiovascular diseases including congenital heart disease and atherosclerosis. Here, NR2F2 silencing in human primary ECs led to inflammation, endothelial-to-mesenchymal transition (EndMT), proliferation, hypermigration, apoptosis-resistance, and increased production of reactive oxygen species. These changes were associated with STAT and AKT activation along with increased production of DKK1. Co-silencing DKK1 and NR2F2 prevented NR2F2-loss-induced STAT and AKT activation and reversed EndMT. Serum DKK1 concentrations were elevated in patients with pulmonary arterial hypertension (PAH) and DKK1 was secreted by ECs in response to in vitro loss of either BMPR2 or CAV1, which are genetic defects associated with the development of PAH. In human primary ECs, NR2F2 suppressed DKK1, whereas its loss conversely induced DKK1 and disrupted endothelial homeostasis, promoting phenotypic abnormalities associated with pathologic vascular remodeling. Activating NR2F2 or blocking DKK1 may be useful therapeutic targets for treating chronic vascular diseases associated with EC dysfunction.NEW & NOTEWORTHY NR2F2 loss in the endothelial lining of blood vessels is associated with cardiovascular disease. Here, NR2F2-silenced human endothelial cells were inflammatory, proliferative, hypermigratory, and apoptosis-resistant with increased oxidant stress and endothelial-to-mesenchymal transition. DKK1 was induced in NR2F2-silenced endothelial cells, while co-silencing NR2F2 and DKK1 prevented NR2F2-loss-associated abnormalities in endothelial signaling and phenotype. Activating NR2F2 or blocking DKK1 may be useful therapeutic targets for treating vascular diseases associated with endothelial dysfunction.


Assuntos
Hipertensão Arterial Pulmonar , Doenças Vasculares , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Endoteliais/metabolismo , Doenças Vasculares/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Inflamação/patologia , Fator II de Transcrição COUP/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
3.
Ann Intern Med ; 174(9): 1240-1251, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34224257

RESUMO

BACKGROUND: Several U.S. hospitals had surges in COVID-19 caseload, but their effect on COVID-19 survival rates remains unclear, especially independent of temporal changes in survival. OBJECTIVE: To determine the association between hospitals' severity-weighted COVID-19 caseload and COVID-19 mortality risk and identify effect modifiers of this relationship. DESIGN: Retrospective cohort study. (ClinicalTrials.gov: NCT04688372). SETTING: 558 U.S. hospitals in the Premier Healthcare Database. PARTICIPANTS: Adult COVID-19-coded inpatients admitted from March to August 2020 with discharge dispositions by October 2020. MEASUREMENTS: Each hospital-month was stratified by percentile rank on a surge index (a severity-weighted measure of COVID-19 caseload relative to pre-COVID-19 bed capacity). The effect of surge index on risk-adjusted odds ratio (aOR) of in-hospital mortality or discharge to hospice was calculated using hierarchical modeling; interaction by surge attributes was assessed. RESULTS: Of 144 116 inpatients with COVID-19 at 558 U.S. hospitals, 78 144 (54.2%) were admitted to hospitals in the top surge index decile. Overall, 25 344 (17.6%) died; crude COVID-19 mortality decreased over time across all surge index strata. However, compared with nonsurging (<50th surge index percentile) hospital-months, aORs in the 50th to 75th, 75th to 90th, 90th to 95th, 95th to 99th, and greater than 99th percentiles were 1.11 (95% CI, 1.01 to 1.23), 1.24 (CI, 1.12 to 1.38), 1.42 (CI, 1.27 to 1.60), 1.59 (CI, 1.41 to 1.80), and 2.00 (CI, 1.69 to 2.38), respectively. The surge index was associated with mortality across ward, intensive care unit, and intubated patients. The surge-mortality relationship was stronger in June to August than in March to May (slope difference, 0.10 [CI, 0.033 to 0.16]) despite greater corticosteroid use and more judicious intubation during later and higher-surging months. Nearly 1 in 4 COVID-19 deaths (5868 [CI, 3584 to 8171]; 23.2%) was potentially attributable to hospitals strained by surging caseload. LIMITATION: Residual confounding. CONCLUSION: Despite improvements in COVID-19 survival between March and August 2020, surges in hospital COVID-19 caseload remained detrimental to survival and potentially eroded benefits gained from emerging treatments. Bolstering preventive measures and supporting surging hospitals will save many lives. PRIMARY FUNDING SOURCE: Intramural Research Program of the National Institutes of Health Clinical Center, the National Institute of Allergy and Infectious Diseases, and the National Cancer Institute.


Assuntos
COVID-19/mortalidade , Hospitalização/estatística & dados numéricos , Corticosteroides/uso terapêutico , Adulto , COVID-19/terapia , Cuidados Críticos/estatística & dados numéricos , Feminino , Número de Leitos em Hospital/estatística & dados numéricos , Mortalidade Hospitalar , Humanos , Masculino , Razão de Chances , Respiração Artificial , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , SARS-CoV-2 , Taxa de Sobrevida , Estados Unidos/epidemiologia
4.
Front Immunol ; 15: 1448780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39324144

RESUMO

Background: Limited data are available describing the effects of SARS-CoV-2 breakthrough infections on the plasma proteome. Methods: PCR-positive SARS-CoV-2 patients, enrolled in a natural history study, underwent analysis of the plasma proteome. A prospective cohort of 66 unvaccinated and 24 vaccinated persons with different degrees of infection severity were evaluated acutely (within 40 days of symptom onset), and at three and ten months. Comparisons based on vaccination status alone and unsupervised hierarchical clustering were performed. A second cohort of vaccinated Omicron patients were evaluated acutely and at ten months. Results: Acutely, unvaccinated patients manifested overexpression of proteins involved in immune and inflammatory responses, while vaccinated patients exhibited adaptive immune responses without significant inflammation. At three and ten months, only unvaccinated patients had diminished but sustained inflammatory (C3b, CCL15, IL17RE) and immune responses (DEFA5,TREM1). Both groups had underexpression of pathways essential for cellular function, signaling, and angiogenesis (AKT1, MAPK14, HSPB1) across phases. Unsupervised clustering, based on protein expression, identified four groups of patients with variable vaccination rates demonstrating that additional clinical factors influence the plasma proteome. The proteome of vaccinated Omicron patients did not differ from vaccinated pre-Omicron patients. Conclusions: Vaccination attenuates the inflammatory response to SARS-CoV-2 infection across phases. However, at ten months after symptom onset, changes in the plasma proteome persist in both vaccinated and unvaccinated individuals, which may be relevant to post-acute sequelae of SARS-CoV-2 and other viral infections associated with post-acute infection syndromes.


Assuntos
COVID-19 , Proteoma , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/sangue , Masculino , Feminino , SARS-CoV-2/imunologia , Pessoa de Meia-Idade , Adulto , Estudos Prospectivos , Vacinas contra COVID-19/imunologia , Vacinação , Idoso , Índice de Gravidade de Doença , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/análise
5.
Cell Rep Med ; 5(7): 101642, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38981485

RESUMO

In order to assess homeostatic mechanisms in the lung after COVID-19, changes in the protein signature of bronchoalveolar lavage from 45 patients with mild to moderate disease at three phases (acute, recovery, and convalescent) are evaluated over a year. During the acute phase, inflamed and uninflamed phenotypes are characterized by the expression of tissue repair and host defense response molecules. With recovery, inflammatory and fibrogenic mediators decline and clinical symptoms abate. However, at 9 months, quantified radiographic abnormalities resolve in the majority of patients, and yet compared to healthy persons, all showed ongoing activation of cellular repair processes and depression of the renin-kallikrein-kinin, coagulation, and complement systems. This dissociation of prolonged reparative processes from symptom and radiographic resolution suggests that occult ongoing disruption of the lung proteome is underrecognized and may be relevant to recovery from other serious viral pneumonias.


Assuntos
COVID-19 , Pulmão , Proteoma , SARS-CoV-2 , Humanos , COVID-19/metabolismo , COVID-19/patologia , COVID-19/virologia , Proteoma/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Pulmão/diagnóstico por imagem , Feminino , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , Estudos Longitudinais , Adulto , Líquido da Lavagem Broncoalveolar/química , Idoso
6.
Pulm Circ ; 11(3): 20458940211022204, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249330

RESUMO

Pulmonary arterial hypertension is characterized by endothelial dysfunction and microthrombi formation. The role of anticoagulation remains controversial, with studies demonstrating inconsistent effects on pulmonary arterial hypertension mortality. Clinical anticoagulation practices are currently heterogeneous, reflecting physician preference. This study uses thrombelastography and hematology markers to evaluate whether clot formation and fibrinolysis are abnormal in pulmonary arterial hypertension patients. Venous blood was collected from healthy volunteers (n = 20) and patients with pulmonary arterial hypertension (n = 20) on stable medical therapy for thrombelastography analysis. Individual thrombelastography parameters and a calculated coagulation index were used for comparison. In addition, hematologic markers, including fibrinogen, factor VIII activity, von Willebrand factor activity, von Willebrand factor antigen, and alpha2-antiplasmin, were measured in pulmonary arterial hypertension patients and compared to healthy volunteers. Between group differences were analyzed using t tests and linear mixed models, accounting for repeated measures when applicable. Although the degree of fibrinolysis (LY30) was significantly lower in pulmonary arterial hypertension patients compared to healthy volunteers (0.3% ± 0.6 versus 1.3% ± 1.1, p = 0.04), all values were within the normal reference range (0-8%). All other thrombelastography parameters were not significantly different between pulmonary arterial hypertension patients and healthy volunteers (p ≥ 0.15 for all). Similarly, alpha2-antiplasmin activity levels were higher in pulmonary arterial hypertension patients compared to healthy volunteers (103.7% ± 13.6 versus 82.6% ± 9.5, p < 0.0001), but all individual values were within the normal range (75-132%). There were no other significant differences in hematologic markers between pulmonary arterial hypertension patients and healthy volunteers (p ≥ 0.07 for all). Sub-group analysis comparing thrombelastography results in patients treated with or without prostacyclin pathway targeted therapies were also non-significant. In conclusion, treated pulmonary arterial hypertension patients do not demonstrate abnormal clotting kinetics or fibrinolysis by thrombelastography.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa