RESUMO
For years, the gold standard for diagnosing Gaucher disease (GD) has been detecting reduced ß-glucocerebrosidase (GCase) activity in peripheral blood cells combined with GBA1 mutation analysis. The use of dried blood spot (DBS) specimens offers many advantages, including easy collection, the need for a small amount of blood, and simpler transportation. However, DBS has limitations for measuring GCase activity. In this paper, we recount our cross-sectional study and publish seven years of experience using DBS samples and levels of the deacylated form of glucocerebroside, glucosylsphingosine (lyso-Gb1), for GD diagnosis. Of 444 screened subjects, 99 (22.3%) were diagnosed with GD at a median (range) age of 21 (1-78) years. Lyso-Gb levels for genetically confirmed GD patients vs. subjects negative to GD diagnosis were 252 (9-1340) ng/mL and 5.4 (1.5-16) ng/mL, respectively. Patients diagnosed with GD1 and mild GBA1 variants had lower median (range) lyso-Gb1, 194 (9-1050), compared to GD1 and severe GBA1 variants, 447 (38-1340) ng/mL, and neuronopathic GD, 325 (116-1270) ng/mL (p = 0.001). Subjects with heterozygous GBA1 variants (carrier) had higher lyso-Gb1 levels, 5.8 (2.5-15.3) ng/mL, compared to wild-type GBA1, 4.9 (1.5-16), ng/mL (p = 0.001). Lyso-Gb1 levels, median (range), were 5 (2.7-10.7) in heterozygous GBA1 carriers with Parkinson's disease (PD), similar to lyso-Gb1 levels in subjects without PD. We call for a paradigm change for the diagnosis of GD based on lyso-Gb1 measurements and confirmatory GBA1 mutation analyses in DBS. Lyso-Gb1 levels could not be used to differentiate between heterozygous GBA1 carriers and wild type.
Assuntos
Biomarcadores/sangue , Doença de Gaucher/diagnóstico , Glucosilceramidase/genética , Psicosina/análogos & derivados , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos Transversais , Detecção Precoce de Câncer , Feminino , Doença de Gaucher/sangue , Doença de Gaucher/genética , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação , Psicosina/sangue , Adulto JovemRESUMO
Gaucher disease (GD) is a lysosomal storage disorder that responds well to enzyme replacement therapy (ERT). Certain laboratory parameters, including blood concentration of glucosylsphingosine (Lyso-Gb1), the lyso-derivate of the common glycolipid glucocerebroside, correlate with clinical improvement and are therefore considered candidate-monitoring biomarkers. Whether they can indicate a reduction or loss of treatment efficiency, however, has not been systematically addressed for obvious reasons. We established and validated measurement of Lyso-Gb1 from dried blood spots (DBSs) by mass spectrometry. We then characterized the assay's longitudinal performance in 19 stably ERT-treated GD patients by dense monitoring over a 3-year period. The observed level of fluctuation was accounted for in the subsequent development of a unifying data normalization concept. The resulting approach was eventually applied to data from Lyso-Gb1 measurements after an involuntary treatment break for all 19 patients. It enabled separation of the "under treatment" versus "not under treatment" conditions with high sensitivity and specificity. We conclude that Lyso-Gb1 determination from DBSs indicates treatment issues already at an early stage before clinical consequences arise. In addition to its previously shown diagnostic utility, Lyso-Gb1 thereby qualifies as a monitoring biomarker in GD patients.
Assuntos
Biomarcadores/sangue , Teste em Amostras de Sangue Seco/métodos , Terapia de Reposição de Enzimas/métodos , Doença de Gaucher/patologia , Glucosilceramidase/administração & dosagem , Psicosina/análogos & derivados , Adolescente , Adulto , Idoso , Criança , Estudos de Coortes , Feminino , Seguimentos , Doença de Gaucher/sangue , Doença de Gaucher/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Psicosina/sangue , Adulto JovemRESUMO
Glucosylceramide and glucosylsphingosine are the two major storage products in Gaucher disease (GD), an inherited metabolic disorder caused by a deficiency of the lysosomal enzyme glucocerebrosidase. The build-up of glucosylceramide in the endoplasmic reticulum and prominent accumulation in cell lysosomes of tissue macrophages results in decreased blood cell and platelet counts, and skeletal abnormalities. The pathological role of the deacylated form of glucosylceramide, glucosylsphingosine (lyso-Gb1), a recently identified sensitive and specific biomarker for GD, is not well investigated. We established a long-term infusion model in C57BL/6JRj mice to examine the effect of lyso-Gb1 on representative hallmark parameters of GD. Mice received lyso-Gb1 at a dosage of 10 mg·kg-1 per day as a continuous subcutaneous administration, and were routinely checked for blood lyso-Gb1 levels using liquid chromatography-multiple reaction monitoring mass spectrometry (LC/MRM-MS) measurements at four-weekly intervals throughout treatment. The C57BL/6JRj mice showed a stable increase of lyso-Gb1 up to->500-fold greater than the normal reflecting concentrations seen in moderately to severely affected patients. Furthermore, lyso-Gb1 accumulated in peripheral tissues. The mice developed hematological symptoms such as reduced hemoglobin and hematocrit, increased spleen weights and a slight inflammatory tissue response after eight weeks of treatment. The above findings indicate a measurable visceral and hematological response in treated mice that suggests a role for lyso-Gb1 in the development of peripheral signs of GD.
Assuntos
Doença de Gaucher/induzido quimicamente , Doença de Gaucher/patologia , Psicosina/análogos & derivados , Vísceras/química , Animais , Cromatografia Líquida , Modelos Animais de Doenças , Doença de Gaucher/sangue , Hematócrito , Hemoglobinas/análise , Humanos , Fígado/química , Fígado/efeitos dos fármacos , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Psicosina/efeitos adversos , Psicosina/sangue , Baço/química , Baço/efeitos dos fármacos , Vísceras/efeitos dos fármacosRESUMO
BACKGROUND: Mucopolysaccharidosis IVA (MPS IVA; Morquio A disease) is an autosomal recessive disease caused and characterized by a decreased activity of N-acetylgalactosamine-6-sulfate sulfatase (GALNS), resulting in accumulation of keratan sulfate and chondroitin-6-sulfate in tissues and secondary organ damage. Recently approved enzyme replacement therapy renders the easy and early identification of MPS IVA of out-most importance. METHODOLOGY: We propose a completely new assay for the stable and reproducible detection of GALNS deficiency in dry blood spots (DBS). For the validation blood samples were taken from 59 healthy individuals and 24 randomly selected genetically confirmed MPS IVA patients. The material extracted from DBS was incubated with a 4-methylumbelliferyl-ß-D-galactopyranoside-6-sulfate as a specific substrate. Final enzymatic product, 4-methylumbelliferone, obtained after adding exogenous beta-galactosidase, was quantified by LC/MRM-MS (liquid-chromatography/multiple-reaction-monitoring mass-spectrometry). 4-propyl-5-hydroxy-7-methyl-2h-chromen-2-one was used as internal standard, a compound with a similar molecular structure and fragmentation pattern in negative ion mode as 4-methylumbelliferone. FINDINGS: The enzymatic assay yielded a positive and negative predictive value of 1.0 for genetically confirmed MPS IVA patients (GALNS activity of 0.35 ± 0.21 µmol/L/h) and for controls with normal GALNS activity (23.1 ± 5.3 µmol/L /h). With present enzymatic conditions, the reaction yield in dried blood spots is at least 20 fold higher than any previously reported data with other assays. INTERPRETATION: The present LC/MRM-MS based assay for MPS IVA diagnosis provides an easy, highly-standardized, accurate and innovative quantification of the enzymatic product in vitro and distinguishes perfectly between MPS IVA affected patients and normal controls. This technique will significantly simplify the early detection of MPS IVA patients.
Assuntos
Espectrometria de Massas/métodos , Mucopolissacaridose IV/diagnóstico , Humanos , Mucopolissacaridose IV/sangueRESUMO
BACKGROUND: Lysosomal storage disorders (LSDs), are a heterogeneous group of rare disorders caused by defects in genes encoding for proteins involved in the lysosomal degradation of macromolecules. They occur at a frequency of about 1 in 5,000 live births, though recent neonatal screening suggests a higher incidence. New treatment options for LSDs demand a rapid, early diagnosis of LSDs if maximal clinical benefit is to be achieved. METHODS: Here, we describe a novel, highly specific and sensitive biomarker for Niemann-Pick Type C disease type 1 (NPC1), lyso-sphingomyelin-509. We cross-validate this biomarker with cholestane-3ß,5α,6ß-triol and relative lysosomal volume. The primary cohort for establishment of the biomarker contained 135 NPC1 patients, 66 NPC1 carriers, 241 patients with other LSDs and 46 healthy controls. RESULTS: With a sensitivity of 100.0% and specificity of 91.0% a cut-off of 1.4 ng/ml was established. Comparison with cholestane-3ß,5α,6ß-triol and relative acidic compartment volume measurements were carried out with a subset of 125 subjects. Both cholestane-3ß,5α,6ß-triol and lyso-Sphingomyelin-509 were sufficient in establishing the diagnosis of NPC1 and correlated with disease severity. CONCLUSION: In summary, we have established a new biomarker for the diagnosis of NPC1, and further studies will be conducted to assess correlation to disease progress and monitoring treatment.
Assuntos
Biomarcadores/sangue , Doença de Niemann-Pick Tipo C/sangue , Doença de Niemann-Pick Tipo C/diagnóstico , Esfingosina/análogos & derivados , Esfingosina/sangue , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
We describe new fully stereocontrolled syntheses of the prostacyclin analogues iloprost (2), the most active component of the drugs Ilomedin and Ventavis, and 3-oxa-iloprost (3), a derivative that is expected to have a significantly higher metabolic stability than 2 perhaps allowing an oral application. The syntheses are based on the same strategy and chiral bicyclic building block as used in the synthesis of cicaprost (4), the third most potent analogue that exhibits, besides prostacyclin-like activities, antimetastatic activities. Reaction of the enantiopure C6-C13 bicyclic aldehyde 17 with Cl(3)CCOOH/Cl(3)CCOONa afforded trichlorocarbinol 24 which was converted via mesylate 25 to the C6-C14 bicyclic alkyne 9. The palladium-catalysed hydrostannylation of alkyne 9 gave with high regio- and stereoselectivity the alkenylstannane 26, Sn/Li exchange of which afforded the E-configured alkenyllithium derivative 8. Coupling of the C6-C14 building block 8 with the enantiopure C15-C20 building block, the N-methoxyamide 7, gave the C6-C20 bicyclic ketone 6 in high yield without epimerisation at C16. The configuration at C15 of iloprost (2) and 3-oxa-iloprost (3) was established through a highly diastereoselective reduction of ketone 6 with catecholborane and the chiral oxazaborolidine 28 which furnished alcohol (15S)-29. The highly stereoselective conversions of alcohol (15S)-29 to iloprost (2) and 3-oxa-iloprost (3), which include as key stereoselective steps an olefination with a chiral phosphonoacetate and a copper-mediated allylic alkylation, have already been described.
Assuntos
Epoprostenol/análogos & derivados , Iloprosta/análogos & derivados , Iloprosta/síntese química , Prostaglandinas Sintéticas/síntese química , Epoprostenol/síntese química , Estereoisomerismo , Vasodilatadores/síntese químicaRESUMO
In this article we describe fully stereocontrolled total syntheses of 16S-iloprost (16S-2), the most active component of the drugs Ilomedin and Ventavis, and of 16S-3-oxa-iloprost (16S-3), a close analogue of 16S-2 having the potential for a high oral activity, by a new and common route. The key steps of this route are (1) the establishment of the complete C13-C20 omega side chain of the target molecules through a stereoselective conjugate addition of the alkenylcopper derivative 9 to the bicyclic C6-C12 azoalkene 10 with formation of hydrazone 8, (2) the diastereoselective olefination of ketone 7 with the chiral phosphoryl acetate 39, and (3) the regio- and stereoselective alkylation of the allylic acetate 43 with cuprate 42. These measures allowed the 5E,15S,16S-stereoselective synthesis of 16S-2 and 16S-3, a goal which had previously not been achieved. Azoalkene 10 was obtained from the achiral bicyclic C6-C12 ketone 11 as previously described by using as key step an enantioselective deprotonation. The configuration at C16 of omega-side chain building block 9 has been installed with high stereoselectivity by the oxazolidinone method and that at C15 by a diastereoselective oxazaborolidine-catalyzed reduction of the C13-C20 ketone 23 with catecholborane. Surprisingly, a high diastereoselectivity in the reduction of 23 was only obtained by using 2 equiv of oxazaborolidine 24. Application of substoichiometric amounts of 24 resulted in irreproducible diastereoselectivities ranging from very high to nil.