Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 61(19): 5559-5566, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36255782

RESUMO

As the COVID-19 pandemic was overtaking the world in the spring of 2020, the National Institute of Standards and Technology (NIST) began collaborating with the National Biodefense Analysis and Countermeasures Center to study the inactivation of SARS-CoV-2 after exposure to different ultraviolet (UV) and blue light wavelengths. This paper describes a 1 kHz pulsed laser and projection system used to study the doses required to inactive SARS-CoV-2 over the wavelength range of 222 to 488 nm. This paper builds on NIST's previous work for water pathogen inactivation using UV laser irradiation. The design of the laser and projection system and its performance in a Biosafety Level 3 (BSL-3) laboratory are given. The SARS-CoV-2 inactivation results (published elsewhere by Schuit, M.A., et al., expected 2022) demonstrate that a tunable laser projection system is an invaluable tool for this research.


Assuntos
COVID-19 , Desinfecção , Humanos , Desinfecção/métodos , SARS-CoV-2 , Pandemias , Raios Ultravioleta , Lasers , Água
2.
J Infect Dis ; 224(10): 1641-1648, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-33822064

RESUMO

BACKGROUND: Our laboratory previously examined the influence of environmental conditions on the stability of an early isolate of SARS-CoV-2 (hCoV-19/USA/WA-1/2020) in aerosols generated from culture medium or simulated saliva. However, genetic differences have emerged among SARS-CoV-2 lineages, and it is possible that these differences may affect environmental stability and the potential for aerosol transmission. METHODS: The influence of temperature, relative humidity, and simulated sunlight on the decay of 4 SARS-CoV-2 isolates in aerosols, including 1 belonging to the recently emerged B.1.1.7 lineage, were compared in a rotating drum chamber. Aerosols were generated from simulated respiratory tract lining fluid to represent aerosols originating from the deep lung. RESULTS: No differences in the stability of the isolates were observed in the absence of simulated sunlight at either 20°C or 40°C. However, a small but statistically significant difference in the stability was observed between some isolates in simulated sunlight at 20°C and 20% relative humidity. CONCLUSIONS: The stability of SARS-CoV-2 in aerosols does not vary greatly among currently circulating lineages, including B.1.1.7, suggesting that the increased transmissibility associated with recent SARS-CoV-2 lineages is not due to enhanced survival in the environment.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Umidade , Aerossóis e Gotículas Respiratórios
3.
J Infect Dis ; 222(2): 214-222, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32432672

RESUMO

Previous studies have demonstrated that SARS-CoV-2 is stable on surfaces for extended periods under indoor conditions. In the present study, simulated sunlight rapidly inactivated SARS-CoV-2 suspended in either simulated saliva or culture media and dried on stainless steel coupons. Ninety percent of infectious virus was inactivated every 6.8 minutes in simulated saliva and every 14.3 minutes in culture media when exposed to simulated sunlight representative of the summer solstice at 40°N latitude at sea level on a clear day. Significant inactivation also occurred, albeit at a slower rate, under lower simulated sunlight levels. The present study provides the first evidence that sunlight may rapidly inactivate SARS-CoV-2 on surfaces, suggesting that persistence, and subsequently exposure risk, may vary significantly between indoor and outdoor environments. Additionally, these data indicate that natural sunlight may be effective as a disinfectant for contaminated nonporous materials.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , COVID-19 , Humanos , SARS-CoV-2 , Luz Solar
4.
J Infect Dis ; 222(4): 564-571, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32525979

RESUMO

Aerosols represent a potential transmission route of COVID-19. This study examined effect of simulated sunlight, relative humidity, and suspension matrix on stability of SARS-CoV-2 in aerosols. Simulated sunlight and matrix significantly affected decay rate of the virus. Relative humidity alone did not affect the decay rate; however, minor interactions between relative humidity and other factors were observed. Mean decay rates (± SD) in simulated saliva, under simulated sunlight levels representative of late winter/early fall and summer were 0.121 ±â€…0.017 min-1 (90% loss, 19 minutes) and 0.306 ±â€…0.097 min-1 (90% loss, 8 minutes), respectively. Mean decay rate without simulated sunlight across all relative humidity levels was 0.008 ±â€…0.011 min-1 (90% loss, 286 minutes). These results suggest that the potential for aerosol transmission of SARS-CoV-2 may be dependent on environmental conditions, particularly sunlight. These data may be useful to inform mitigation strategies to minimize the potential for aerosol transmission.


Assuntos
Microbiologia do Ar , Betacoronavirus/efeitos da radiação , Infecções por Coronavirus/transmissão , Pneumonia Viral/transmissão , Luz Solar , Aerossóis , Animais , COVID-19 , Chlorocebus aethiops , Simulação por Computador , Meios de Cultura , Umidade , Concentração de Íons de Hidrogênio , Pandemias , Análise de Regressão , SARS-CoV-2 , Saliva/química , Saliva/virologia , Células Vero
5.
J Photochem Photobiol B ; 233: 112503, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35779426

RESUMO

Numerous studies have demonstrated that SARS-CoV-2 can be inactivated by ultraviolet (UV) radiation. However, there are few data available on the relative efficacy of different wavelengths of UV radiation and visible light, which complicates assessments of UV decontamination interventions. The present study evaluated the effects of monochromatic radiation at 16 wavelengths from 222 nm through 488 nm on SARS-CoV-2 in liquid aliquots and dried droplets of water and simulated saliva. The data were used to generate a set of action spectra which quantify the susceptibility of SARS-CoV-2 to genome damage and inactivation across the tested wavelengths. UVC wavelengths (≤280 nm) were most effective for inactivating SARS-CoV-2, although inactivation rates were dependent on sample type. Results from this study suggest that UV radiation can effectively inactivate SARS-CoV-2 in liquids and dried droplets, and provide a foundation for understanding the factors which affect the efficacy of different wavelengths in real-world settings.


Assuntos
COVID-19 , SARS-CoV-2 , Desinfecção/métodos , Humanos , Luz , Raios Ultravioleta , Inativação de Vírus/efeitos da radiação
6.
Aerosol Sci Technol ; 55(8): 975-986, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38076006

RESUMO

To assess the risk of aerosol transmission of SARS-CoV-2, measurements of the airborne viral concentrations in proximity to infected individuals, the persistence of the virus in aerosols, and the dose of the virus needed to cause infection following inhalation are required. For studies aimed at quantifying these parameters, an aerosol sampling device needs to be employed. A number of recent studies have reported the detection of both genetic material and infectious SARS-CoV-2 virus in air samples collected in clinical settings. Previous studies have demonstrated that the efficiency of different samplers for collection and preservation of the infectivity of microorganisms can vary as a function of the specific microorganism. In the present study, the performance of eight common low-flow aerosol sampling devices were compared for their ability to collect and preserve the infectivity of airborne SARS-CoV-2 contained in small particle aerosols. The influence of sampling duration on recovery of infectious virus was also evaluated. Similar concentrations of infectious SARS-CoV-2 were measured in aerosols for the majority of the samplers tested, with the exception of the midget impingers, which measured significantly lower concentrations of SARS-CoV-2. Additionally, in three of the four impingers tested, additional clean airflow through the device following collection of infectious virus resulted in a decrease of the infectious concentration of virus over time, suggesting that virus was being inactivated and these devices may not be suitable for sampling for long durations. Further, RNA copies in the samples over time did not correspond with the losses of infectious SARS-CoV-2 observed in the impingers samples. These data can be utilized to inform interpretation of current studies on the SARS-CoV-2 viral loads in air samples, as well as inform sampling device selection in future studies.

7.
Aerosol Sci Technol ; 55(2): 142-153, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38077296

RESUMO

Recent evidence suggests that respiratory aerosols may play a role in the spread of SARS-CoV-2 during the ongoing COVID-19 pandemic. Our laboratory has previously demonstrated that simulated sunlight inactivated SARS-CoV-2 in aerosols and on surfaces. In the present study, we extend these findings to include the persistence of SARS-CoV-2 in aerosols across a range of temperature, humidity, and simulated sunlight levels using an environmentally controlled rotating drum aerosol chamber. The results demonstrate that temperature, simulated sunlight, and humidity are all significant factors influencing the persistence of infectious SARS-CoV-2 in aerosols, but that simulated sunlight and temperature have a greater influence on decay than humidity across the range of conditions tested. The time needed for a 90% decrease in infectious virus ranged from 4.8 min at 40 °C, 20% relative humidity, and high intensity simulated sunlight representative of noon on a clear day on the summer solstice at 4°N latitude, to greater than two hours under conditions representative of those expected indoors or at night. These results suggest that the persistence of infectious SARS-CoV-2 in naturally occurring aerosols may be affected by environmental conditions, and that aerosolized virus could remain infectious for extended periods of time under some environmental conditions. The present study provides a comprehensive dataset on the influence of environmental parameters on the survival of SARS-CoV-2 in aerosols that can be utilized, along with data on viral shedding from infected individuals and the inhalational infectious dose, to inform future modeling and risk assessment efforts.

8.
mSphere ; 5(4)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611701

RESUMO

Coronavirus disease 2019 (COVID-19) was first identified in China in late 2019 and is caused by newly identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Previous studies had reported the stability of SARS-CoV-2 in cell culture media and deposited onto surfaces under a limited set of environmental conditions. Here, we broadly investigated the effects of relative humidity, temperature, and droplet size on the stability of SARS-CoV-2 in a simulated clinically relevant matrix dried on nonporous surfaces. The results show that SARS-CoV-2 decayed more rapidly when either humidity or temperature was increased but that droplet volume (1 to 50 µl) and surface type (stainless steel, plastic, or nitrile glove) did not significantly impact decay rate. At room temperature (24°C), virus half-life ranged from 6.3 to 18.6 h depending on the relative humidity but was reduced to 1.0 to 8.9 h when the temperature was increased to 35°C. These findings suggest that a potential for fomite transmission may persist for hours to days in indoor environments and have implications for assessment of the risk posed by surface contamination in indoor environments.IMPORTANCE Mitigating the transmission of SARS-CoV-2 in clinical settings and public spaces is critically important to reduce the number of COVID-19 cases while effective vaccines and therapeutics are under development. SARS-CoV-2 transmission is thought to primarily occur through direct person-to-person transfer of infectious respiratory droplets or through aerosol-generating medical procedures. However, contact with contaminated surfaces may also play a significant role. In this context, understanding the factors contributing to SARS-CoV-2 persistence on surfaces will enable a more accurate estimation of the risk of contact transmission and inform mitigation strategies. To this end, we have developed a simple mathematical model that can be used to estimate virus decay on nonporous surfaces under a range of conditions and which may be utilized operationally to identify indoor environments in which the virus is most persistent.


Assuntos
Fômites/virologia , Umidade , Modelos Teóricos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Temperatura , Inativação de Vírus , Poluição do Ar em Ambientes Fechados , COVID-19 , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Meia-Vida , Humanos , Pandemias/prevenção & controle , Plásticos , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Porosidade , Saliva/química , Saliva/virologia , Aço Inoxidável , Propriedades de Superfície
9.
J Neurochem ; 103(3): 1041-52, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17935603

RESUMO

Oxidative damage contributes to retinal cell death in patients with age-related macular degeneration or retinitis pigmentosa. One approach to treatment is to identify and eliminate the sources of oxidative damage. Another approach is to identify treatments that protect cells from multiple sources of oxidative damage. In this study, we investigated the effect of increased expression of glial cell line-derived neurotrophic factor (GDNF) in three models of oxidative damage-induced retinal degeneration. Double transgenic mice with doxycycline-inducible expression of GDNF in the retina were exposed to paraquat, FeSO(4), or hyperoxia, all sources of oxidative damage and retinal cell death. Compared to controls, mice with increased expression of GDNF in the retina showed significant preservation of retinal function measured by electroretinograms, reduced thinning of retinal cell layers, and fewer TUNEL-positive cells indicating less retinal cell death. Mice over-expressing GDNF also showed less staining for acrolein, nitrotyrosine, and 8-hydroxydeoxyguanosine, indicating less oxidative damage to lipids, proteins, and DNA. This suggests that GDNF did not act solely to allow cells to tolerate higher levels of oxidative damage before initiation of apoptosis, but also reduced damage from oxidative stress to critical macromolecules. These data suggest that gene transfer of Gdnf should be considered as a component of therapy for retinal degenerations in which oxidative damage plays a role.


Assuntos
Citoproteção/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Degeneração Retiniana/metabolismo , Animais , Apoptose/fisiologia , Dano ao DNA/fisiologia , Eletrorretinografia , Compostos Férricos/toxicidade , Expressão Gênica/fisiologia , Terapia Genética/métodos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Herbicidas/toxicidade , Hiperóxia/complicações , Hiperóxia/fisiopatologia , Peroxidação de Lipídeos/fisiologia , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Oxigênio/toxicidade , Paraquat/toxicidade , Proteínas/metabolismo , Degeneração Retiniana/fisiopatologia , Regulação para Cima/fisiologia
10.
J Cell Physiol ; 208(3): 516-26, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16741961

RESUMO

Bolstering the endogenous oxidative damage defense system is a good strategy for development of treatments to combat neurodegenerative diseases in which oxidative damage plays a role. A first step in such treatment development is to determine the role of various components of the defense system in cells that degenerate. In this study, we sought to determine the role of superoxide dismutase 1 (SOD1) in two models of oxidative damage-induced retinal degeneration. In one model, paraquat is injected into the vitreous cavity and then enters retinal cells and generates reactive oxygen species (ROS) that cause progressive retinal damage. Assessment of retinal function with serial electroretinograms (ERGs) showed that sod1 -/- mice were much more sensitive than sod1 +/+ mice to the damaging effects of paraquat, while sod1 +/- mice showed intermediate sensitivity. Compared to sod1 +/+ mice, sod1 -/- mice showed greater paraquat-induced oxidative damage and apoptosis. In the second model, mice were exposed to hyperoxia for several weeks, and sod1 -/- mice showed significantly greater reductions in ERG amplitudes than sod1 +/+ mice. In both of these models, transgenic mice carrying a sod1 transgene driven by a beta-actin promoter showed less oxidative stress-induced reduction in ERG amplitudes. These data demonstrate that SOD1 protects retinal cells against paraquat- and hyperoxia-induced oxidative damage and suggest that overexpression of SOD1 should be considered as one component of ocular gene therapy to prevent oxidative damage-induced retinal degeneration.


Assuntos
Hiperóxia , Estresse Oxidativo , Retina/enzimologia , Superóxido Dismutase/genética , Animais , Núcleo Celular/ultraestrutura , Eletrorretinografia , Deleção de Genes , Camundongos , Camundongos Knockout , Paraquat/toxicidade , Retina/efeitos dos fármacos , Retina/patologia , Superóxido Dismutase/deficiência , Superóxido Dismutase-1
11.
Mol Pharmacol ; 68(6): 1543-50, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16150930

RESUMO

Tumors provide an extremely abnormal microenvironment that stimulates neovascularization from surrounding vessels and causes altered gene expression within vascular cells. Up-regulation of vascular endothelial growth factor (VEGF) receptors has allowed selective destruction of tumor vessels by administration of a chimeric protein consisting of VEGF121 coupled to the toxin gelonin (VEGF/rGel). We sought to determine whether there is sufficient up-regulation of VEGF receptors in endothelial cells participating in ocular neovascularization to permit a similar strategy. After intravenous injection of 45 mg/kg VEGF/rGel, but not uncoupled recombinant gelonin (rGel), there was immunofluorescent staining for rGel within choroidal neovascularization in mice and regression of the neovascularization occurred, demonstrating successful vascular targeting via the systemic circulation. Intraocular injection of 5 ng of VEGF/rGel also caused significant regression of choroidal neovascularization and regression of retinal neovascularization in two models, transgenic mice with expression of VEGF in photoreceptors and mice with ischemic retinopathy, whereas injection of 5 ng of rGel had no effect. These data suggest that the strategy of vascular targeting can be applied to nonmalignant neovascular diseases and could serve as the basis of a new treatment to reduce established ocular neovascularization.


Assuntos
Neovascularização de Coroide/tratamento farmacológico , Neovascularização Retiniana/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Modelos Animais de Doenças , Camundongos , Proteínas de Plantas/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/efeitos dos fármacos , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Proteínas Inativadoras de Ribossomos Tipo 1 , Resultado do Tratamento , Regulação para Cima/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa