Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Circ Res ; 134(11): e133-e149, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38639105

RESUMO

BACKGROUND: The precise origin of newly formed ACTA2+ (alpha smooth muscle actin-positive) cells appearing in nonmuscularized vessels in the context of pulmonary hypertension is still debatable although it is believed that they predominantly derive from preexisting vascular smooth muscle cells (VSMCs). METHODS: Gli1Cre-ERT2; tdTomatoflox mice were used to lineage trace GLI1+ (glioma-associated oncogene homolog 1-positive) cells in the context of pulmonary hypertension using 2 independent models of vascular remodeling and reverse remodeling: hypoxia and cigarette smoke exposure. Hemodynamic measurements, right ventricular hypertrophy assessment, flow cytometry, and histological analysis of thick lung sections followed by state-of-the-art 3-dimensional reconstruction and quantification using Imaris software were used to investigate the contribution of GLI1+ cells to neomuscularization of the pulmonary vasculature. RESULTS: The data show that GLI1+ cells are abundant around distal, nonmuscularized vessels during steady state, and this lineage contributes to around 50% of newly formed ACTA2+ cells around these normally nonmuscularized vessels. During reverse remodeling, cells derived from the GLI1+ lineage are largely cleared in parallel to the reversal of muscularization. Partial ablation of GLI1+ cells greatly prevented vascular remodeling in response to hypoxia and attenuated the increase in right ventricular systolic pressure and right heart hypertrophy. Single-cell RNA sequencing on sorted lineage-labeled GLI1+ cells revealed an Acta2high fraction of cells with pathways in cancer and MAPK (mitogen-activated protein kinase) signaling as potential players in reprogramming these cells during vascular remodeling. Analysis of human lung-derived material suggests that GLI1 signaling is overactivated in both group 1 and group 3 pulmonary hypertension and can promote proliferation and myogenic differentiation. CONCLUSIONS: Our data highlight GLI1+ cells as an alternative cellular source of VSMCs in pulmonary hypertension and suggest that these cells and the associated signaling pathways represent an important therapeutic target for further studies.


Assuntos
Hipertensão Pulmonar , Remodelação Vascular , Proteína GLI1 em Dedos de Zinco , Animais , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Camundongos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Camundongos Endogâmicos C57BL , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Camundongos Transgênicos , Masculino , Humanos , Hipóxia/metabolismo , Hipóxia/fisiopatologia
2.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38892401

RESUMO

Increased mitochondrial reactive oxygen species (ROS) formation is important for the development of right ventricular (RV) hypertrophy (RVH) and failure (RVF) during pulmonary hypertension (PH). ROS molecules are produced in different compartments within the cell, with mitochondria known to produce the strongest ROS signal. Among ROS-forming mitochondrial proteins, outer-mitochondrial-membrane-located monoamine oxidases (MAOs, type A or B) are capable of degrading neurotransmitters, thereby producing large amounts of ROS. In mice, MAO-B is the dominant isoform, which is present in almost all cell types within the heart. We analyzed the effect of an inducible cardiomyocyte-specific knockout of MAO-B (cmMAO-B KO) for the development of RVH and RVF in mice. Right ventricular hypertrophy was induced by pulmonary artery banding (PAB). RV dimensions and function were measured through echocardiography. ROS production (dihydroethidium staining), protein kinase activity (PamStation device), and systemic hemodynamics (in vivo catheterization) were assessed. A significant decrease in ROS formation was measured in cmMAO-B KO mice during PAB compared to Cre-negative littermates, which was associated with reduced activity of protein kinases involved in hypertrophic growth. In contrast to littermates in which the RV was dilated and hypertrophied following PAB, RV dimensions were unaffected in response to PAB in cmMAO-B KO mice, and no decline in RV systolic function otherwise seen in littermates during PAB was measured in cmMAO-B KO mice. In conclusion, cmMAO-B KO mice are protected against RV dilatation, hypertrophy, and dysfunction following RV pressure overload compared to littermates. These results support the hypothesis that cmMAO-B is a key player in causing RV hypertrophy and failure during PH.


Assuntos
Hipertensão Pulmonar , Hipertrofia Ventricular Direita , Camundongos Knockout , Monoaminoxidase , Espécies Reativas de Oxigênio , Animais , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/genética , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/patologia , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Monoaminoxidase/deficiência , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Masculino , Modelos Animais de Doenças , Ventrículos do Coração/patologia , Ventrículos do Coração/metabolismo , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/genética , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/patologia
3.
Circulation ; 145(12): 916-933, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35175782

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a life-threatening disease, characterized by excessive pulmonary vascular remodeling, leading to elevated pulmonary arterial pressure and right heart hypertrophy. PH can be caused by chronic hypoxia, leading to hyper-proliferation of pulmonary arterial smooth muscle cells (PASMCs) and apoptosis-resistant pulmonary microvascular endothelial cells (PMVECs). On reexposure to normoxia, chronic hypoxia-induced PH in mice is reversible. In this study, the authors aim to identify novel candidate genes involved in pulmonary vascular remodeling specifically in the pulmonary vasculature. METHODS: After microarray analysis, the authors assessed the role of SPARC (secreted protein acidic and rich in cysteine) in PH using lung tissue from idiopathic pulmonary arterial hypertension (IPAH) patients, as well as from chronically hypoxic mice. In vitro studies were conducted in primary human PASMCs and PMVECs. In vivo function of SPARC was proven in chronic hypoxia-induced PH in mice by using an adeno-associated virus-mediated Sparc knockdown approach. RESULTS: C57BL/6J mice were exposed to normoxia, chronic hypoxia, or chronic hypoxia with subsequent reexposure to normoxia for different time points. Microarray analysis of the pulmonary vascular compartment after laser microdissection identified Sparc as one of the genes downregulated at all reoxygenation time points investigated. Intriguingly, SPARC was vice versa upregulated in lungs during development of hypoxia-induced PH in mice as well as in IPAH, although SPARC plasma levels were not elevated in PH. TGF-ß1 (transforming growth factor ß1) or HIF2A (hypoxia-inducible factor 2A) signaling pathways induced SPARC expression in human PASMCs. In loss of function studies, SPARC silencing enhanced apoptosis and reduced proliferation. In gain of function studies, elevated SPARC levels induced PASMCs, but not PMVECs, proliferation. Coculture and conditioned medium experiments revealed that PMVECs-secreted SPARC acts as a paracrine factor triggering PASMCs proliferation. Contrary to the authors' expectations, in vivo congenital Sparc knockout mice were not protected from hypoxia-induced PH, most probably because of counter-regulatory proproliferative signaling. However, adeno-associated virus-mediated Sparc knockdown in adult mice significantly improved hemodynamic and cardiac function in PH mice. CONCLUSIONS: This study provides evidence for the involvement of SPARC in the pathogenesis of human PH and chronic hypoxia-induced PH in mice, most likely by affecting vascular cell function.


Assuntos
Hipertensão Pulmonar , Animais , Proliferação de Células , Células Cultivadas , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Humanos , Hipertensão Pulmonar/patologia , Hipóxia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/metabolismo , Osteonectina/genética , Artéria Pulmonar , Remodelação Vascular/genética
4.
Eur Respir J ; 62(5)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37884305

RESUMO

BACKGROUND: COPD is an incurable disease and a leading cause of death worldwide. In mice, fibroblast growth factor (FGF)10 is essential for lung morphogenesis, and in humans, polymorphisms in the human FGF10 gene correlate with an increased susceptibility to develop COPD. METHODS: We analysed FGF10 signalling in human lung sections and isolated cells from healthy donor, smoker and COPD lungs. The development of emphysema and PH was investigated in Fgf10+/- and Fgfr2b+/- (FGF receptor 2b) mice upon chronic exposure to cigarette smoke. In addition, we overexpressed FGF10 in mice following elastase- or cigarette smoke-induced emphysema and pulmonary hypertension (PH). RESULTS: We found impaired FGF10 expression in human lung alveolar walls and in primary interstitial COPD lung fibroblasts. In contrast, FGF10 expression was increased in large pulmonary vessels in COPD lungs. Consequently, we identified impaired FGF10 signalling in alveolar walls as an integral part of the pathomechanism that leads to emphysema and PH development: mice with impaired FGF10 signalling (Fgf10+/- and Fgfr2b+/- ) spontaneously developed lung emphysema, PH and other typical pathomechanistic features that generally arise in response to cigarette smoke exposure. CONCLUSION: In a therapeutic approach, FGF10 overexpression successfully restored lung alveolar and vascular structure in mice with established cigarette smoke- and elastase-induced emphysema and PH. FGF10 treatment triggered an initial increase in the number of alveolar type 2 cells that gradually returned to the basal level when the FGF10-mediated repair process progressed. Therefore, the application of recombinant FGF10 or stimulation of the downstream signalling cascade might represent a novel therapeutic strategy in the future.


Assuntos
Fumar Cigarros , Enfisema , Hipertensão Pulmonar , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Animais , Camundongos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Hipertensão Pulmonar/complicações , Elastase Pancreática/efeitos adversos , Elastase Pancreática/metabolismo , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fator 10 de Crescimento de Fibroblastos/uso terapêutico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/uso terapêutico , Fumar Cigarros/efeitos adversos , Enfisema Pulmonar/etiologia , Pulmão/metabolismo , Enfisema/complicações , Camundongos Endogâmicos C57BL
5.
Eur Respir J ; 61(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37105573

RESUMO

BACKGROUND: Electronic cigarette (e-cigarette) vapour is gaining popularity as an alternative to tobacco smoking and can induce acute lung injury. However, the specific role of nicotine in e-cigarette vapour and its long-term effects on the airways, lung parenchyma and vasculature remain unclear. RESULTS: In vitro exposure to nicotine-containing e-cigarette vapour extract (ECVE) or to nicotine-free e-cigarette vapour extract (NF ECVE) induced changes in gene expression of epithelial cells and pulmonary arterial smooth muscle cells (PASMCs), but ECVE in particular caused functional alterations (e.g. a decrease in human and mouse PASMC proliferation by 29.3±5.3% and 44.3±8.4%, respectively). Additionally, acute inhalation of nicotine-containing e-cigarette vapour (ECV) but not nicotine-free e-cigarette vapour (NF ECV) increased pulmonary endothelial permeability in isolated lungs. Long-term in vivo exposure of mice to ECV for 8 months significantly increased the number of inflammatory cells, in particular lymphocytes, compared to control and NF ECV in the bronchoalveolar fluid (BALF) (ECV: 853.4±150.8 cells·mL-1; control: 37.0±21.1 cells·mL-1; NF ECV: 198.6±94.9 cells·mL-1) and in lung tissue (ECV: 25.7±3.3 cells·mm-3; control: 4.8±1.1 cells·mm-3; NF ECV: 14.1±2.2 cells·mm-3). BALF cytokines were predominantly increased by ECV. Moreover, ECV caused significant changes in lung structure and function (e.g. increase in airspace by 17.5±1.4% compared to control), similar to mild tobacco smoke-induced alterations, which also could be detected in the NF ECV group, albeit to a lesser degree. In contrast, the pulmonary vasculature was not significantly affected by ECV or NF ECV. CONCLUSIONS: NF ECV components induce cell type-specific effects and mild pulmonary alterations, while inclusion of nicotine induces significant endothelial damage, inflammation and parenchymal alterations.


Assuntos
Vapor do Cigarro Eletrônico , Sistemas Eletrônicos de Liberação de Nicotina , Pneumonia , Humanos , Animais , Camundongos , Nicotina/efeitos adversos , Vapor do Cigarro Eletrônico/efeitos adversos , Vapor do Cigarro Eletrônico/metabolismo , Pneumonia/etiologia , Pneumonia/metabolismo , Pulmão/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia
6.
Stem Cells ; 40(6): 605-617, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35437594

RESUMO

Bronchopulmonary dysplasia (BPD) is a neonatal lung disease developing in premature babies characterized by arrested alveologenesis and associated with decreased Fibroblast growth factor 10 (FGF10) expression. One-week hyperoxia (HYX) exposure of newborn mice leads to a permanent arrest in alveologenesis. To test the role of Fgf10 signaling to promote de novo alveologenesis following hyperoxia, we used transgenic mice allowing inducible expression of Fgf10 and recombinant FGF10 (rFGF10) protein delivered intraperitoneally. We carried out morphometry analysis, and IF on day 45. Alveolospheres assays were performed co-culturing AT2s from normoxia (NOX) with FACS-isolated Sca1Pos resident mesenchymal cells (rMC) from animals exposed to NOX, HYX-PBS, or HYX-FGF10. scRNAseq between rMC-Sca1Pos isolated from NOX and HYX-PBS was also carried out. Transgenic overexpression of Fgf10 and rFGF10 administration rescued the alveologenesis defects following HYX. Alveolosphere assays indicate that the activity of rMC-Sca1Pos is negatively impacted by HYX and partially rescued by rFGF10 treatment. Analysis by IF demonstrates a significant impact of rFGF10 on the activity of resident mesenchymal cells. scRNAseq results identified clusters expressing Fgf10, Fgf7, Pdgfra, and Axin2, which could represent the rMC niche cells for the AT2 stem cells. In conclusion, we demonstrate that rFGF10 administration is able to induce de novo alveologenesis in a BPD mouse model and identified subpopulations of rMC-Sca1Pos niche cells potentially representing its cellular target.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Fator 10 de Crescimento de Fibroblastos/genética , Fator 10 de Crescimento de Fibroblastos/metabolismo , Humanos , Hiperóxia/metabolismo , Recém-Nascido , Pulmão/metabolismo , Camundongos , Camundongos Transgênicos
7.
Circulation ; 143(14): 1394-1410, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33334130

RESUMO

BACKGROUND: Vascular smooth muscle cells (VSMCs) show a remarkable phenotypic plasticity, allowing acquisition of contractile or synthetic states, but critical information is missing about the physiologic signals, promoting formation, and maintenance of contractile VSMCs in vivo. BMP9 and BMP10 (bone morphogenetic protein) are known to regulate endothelial quiescence after secretion from the liver and right atrium, whereas a direct role in the regulation of VSMCs was not investigated. We studied the role of BMP9 and BMP10 for controlling formation of contractile VSMCs. METHODS: We generated several cell type-specific loss- and gain-of-function transgenic mouse models to investigate the physiologic role of BMP9, BMP10, ALK1 (activin receptor-like kinase 1), and SMAD7 in vivo. Morphometric assessments, expression analysis, blood pressure measurements, and single molecule fluorescence in situ hybridization were performed together with analysis of isolated pulmonary VSMCs to unravel phenotypic and transcriptomic changes in response to absence or presence of BMP9 and BMP10. RESULTS: Concomitant genetic inactivation of Bmp9 in the germ line and Bmp10 in the right atrium led to dramatic changes in vascular tone and diminution of the VSMC layer with attenuated contractility and decreased systemic as well as right ventricular systolic pressure. On the contrary, overexpression of Bmp10 in endothelial cells of adult mice dramatically enhanced formation of contractile VSMCs and increased systemic blood pressure as well as right ventricular systolic pressure. Likewise, BMP9/10 treatment induced an ALK1-dependent phenotypic switch from synthetic to contractile in pulmonary VSMCs. Smooth muscle cell-specific overexpression of Smad7 completely suppressed differentiation and proliferation of VSMCs and reiterated defects observed in adult Bmp9/10 double mutants. Deletion of Alk1 in VSMCs recapitulated the Bmp9/10 phenotype in pulmonary but not in aortic and coronary arteries. Bulk expression analysis and single molecule RNA-fluorescence in situ hybridization uncovered vessel bed-specific, heterogeneous expression of BMP type 1 receptors, explaining phenotypic differences in different Alk1 mutant vessel beds. CONCLUSIONS: Our study demonstrates that BMP9 and BMP10 act directly on VSMCs for induction and maintenance of their contractile state. The effects of BMP9/10 in VSMCs are mediated by different combinations of BMP type 1 receptors in a vessel bed-specific manner, offering new opportunities to manipulate blood pressure in the pulmonary circulation.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Fator 2 de Diferenciação de Crescimento/metabolismo , Músculo Liso Vascular/fisiologia , Contração Miocárdica/fisiologia , Animais , Diferenciação Celular , Humanos , Camundongos
8.
Eur Respir J ; 59(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34475225

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a common complication of COPD, associated with increased mortality and morbidity. Intriguingly, pulmonary vascular alterations have been suggested to drive emphysema development. Previously, we identified inducible nitric oxide synthase (iNOS) as an essential enzyme for development and reversal of smoke-induced PH and emphysema, and showed that iNOS expression in bone-marrow-derived cells drives pulmonary vascular remodelling, but not parenchymal destruction. In this study, we aimed to identify the iNOS-expressing cell type driving smoke-induced PH and to decipher pro-proliferative pathways involved. METHODS: To address this question we used 1) myeloid-cell-specific iNOS knockout mice in chronic smoke exposure and 2) co-cultures of macrophages and pulmonary artery smooth muscle cells (PASMCs) to decipher underlying signalling pathways. RESULTS: Myeloid-cell-specific iNOS knockout prevented smoke-induced PH but not emphysema in mice. Moreover, iNOS deletion in myeloid cells ameliorated the increase in expression of CD206, a marker of M2 polarisation, on interstitial macrophages. Importantly, the observed effects on lung macrophages were hypoxia-independent, as these mice developed hypoxia-induced PH. In vitro, smoke-induced PASMC proliferation in co-cultures with M2-polarised macrophages could be abolished by iNOS deletion in phagocytic cells, as well as by extracellular signal-regulated kinase inhibition in PASMCs. Crucially, CD206-positive and iNOS-positive macrophages accumulated in proximity of remodelled vessels in the lungs of COPD patients, as shown by immunohistochemistry. CONCLUSION: In summary, our results demonstrate that iNOS deletion in myeloid cells confers protection against PH in smoke-exposed mice and provide evidence for an iNOS-dependent communication between M2-like macrophages and PASMCs in underlying pulmonary vascular remodelling.


Assuntos
Enfisema , Hipertensão Pulmonar , Enfisema Pulmonar , Animais , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/prevenção & controle , Hipóxia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fumaça/efeitos adversos , Nicotiana/metabolismo , Remodelação Vascular
9.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L903-L915, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33760647

RESUMO

Chronic obstructive pulmonary disease (COPD) is a major cause of death and a still incurable disease, comprising emphysema and chronic bronchitis. In addition to airflow limitation, patients with COPD can suffer from pulmonary hypertension (PH). Doxycycline, an antibiotic from the tetracycline family, in addition to its pronounced antimicrobial activity, acts as a matrix metalloproteinase (MMP) inhibitor and has anti-inflammatory properties. Furthermore, doxycycline treatment exhibited a beneficial effect in several preclinical cardiovascular disease models. In preclinical research, doxycycline is frequently employed for gene expression modulation in Tet-On/Tet-Off transgenic animal models. Therefore, it is crucial to know whether doxycycline treatment in Tet-On/Tet-Off systems has effects independent of gene expression modulation by such systems. Against this background, we assessed the possible curative effects of long-term doxycycline administration in a mouse model of chronic CS exposure. Animals were exposed to cigarette smoke (CS) for 8 mo and then subsequently treated with doxycycline for additional 3 mo in room air conditions. Doxycycline decreased the expression of MMPs and general pro-inflammatory markers in the lungs from CS-exposed mice. This downregulation was, however, insufficient to ameliorate CS-induced emphysema or PH. Tet-On/Tet-Off induction by doxycycline in such models is a feasible genetic approach to study curative effects at least in established CS-induced emphysema and PH. However, we report several parameters that are influenced by doxycycline and use of a Tet-On/Tet-Off system when evaluating those parameters should be interpreted with caution.


Assuntos
Fumar Cigarros , Doxiciclina/farmacologia , Hipertensão Pulmonar , Enfisema Pulmonar , Animais , Fumar Cigarros/tratamento farmacológico , Fumar Cigarros/genética , Fumar Cigarros/metabolismo , Fumar Cigarros/patologia , Modelos Animais de Doenças , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Camundongos , Camundongos Transgênicos , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Fatores de Tempo
10.
Am J Physiol Lung Cell Mol Physiol ; 318(4): L831-L843, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32186397

RESUMO

PDGF-A is a key contributor to lung development in mice. Its expression is needed for secondary septation of the alveoli and deletion of the gene leads to abnormally enlarged alveolar air spaces in mice. In humans, the same phenotype is the hallmark of bronchopulmonary dysplasia (BPD), a disease that affects premature babies and may have long lasting consequences in adulthood. So far, the knowledge regarding adult effects of developmental arrest in the lung is limited. This is attributable to few follow-up studies of BPD survivors and lack of good experimental models that could help predict the outcomes of this early age disease for the adult individual. In this study, we used the constitutive lung-specific Pdgfa deletion mouse model to analyze the consequences of developmental lung defects in adult mice. We assessed lung morphology, physiology, cellular content, ECM composition and proteomics data in mature mice, that perinatally exhibited lungs with a BPD-like morphology. Histological and physiological analyses both revealed that enlarged alveolar air spaces remained until adulthood, resulting in higher lung compliance and higher respiratory volume in knockout mice. Still, no or only small differences were seen in cellular, ECM and protein content when comparing knockout and control mice. Taken together, our results indicate that Pdgfa deletion-induced lung developmental arrest has consequences for the adult lung at the morphological and functional level. In addition, these mice can reach adulthood with a BPD-like phenotype, which makes them a robust model to further investigate the pathophysiological progression of the disease and test putative regenerative therapies.


Assuntos
Pulmão/patologia , Fator de Crescimento Derivado de Plaquetas/genética , Animais , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patologia , Modelos Animais de Doenças , Feminino , Seguimentos , Hiperóxia/genética , Hiperóxia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Alvéolos Pulmonares/patologia
11.
Eur Respir J ; 53(6)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30956210

RESUMO

Chronic obstructive pulmonary disease (COPD), which comprises the phenotypes of chronic bronchitis and emphysema, is often associated with pulmonary hypertension (PH). However, currently, no approved therapy exists for PH-COPD. Signalling of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) axis plays an important role in PH and COPD.We investigated the treatment effect of riociguat, which promotes the NO-cGMP pathway, in the mouse model of smoke-induced PH and emphysema in a curative approach, and retrospectively analysed the effect of riociguat treatment on PH in single patients with PH-COPD.In mice with established PH and emphysema (after 8 months of cigarette smoke exposure), riociguat treatment for another 3 months fully reversed PH. Moreover, histological hallmarks of emphysema were decreased. Microarray analysis revealed involvement of different signalling pathways, e.g. related to matrix metalloproteinases (MMPs). MMP activity was decreased in vivo by riociguat. In PH-COPD patients treated with riociguat (n=7), the pulmonary vascular resistance, airway resistance and circulating MMP levels decreased, while oxygenation at rest was not significantly changed.Riociguat may be beneficial for treatment of PH-COPD. Further long-term prospective studies are necessary to investigate the tolerability, efficacy on functional parameters and effect specifically on pulmonary emphysema in COPD patients.


Assuntos
GMP Cíclico/metabolismo , Hipertensão Pulmonar/tratamento farmacológico , Óxido Nítrico/metabolismo , Doença Pulmonar Obstrutiva Crônica/complicações , Pirazóis/farmacologia , Pirimidinas/farmacologia , Animais , Modelos Animais de Doenças , Humanos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Enfisema Pulmonar/fisiopatologia , Estudos Retrospectivos , Transdução de Sinais , Guanilil Ciclase Solúvel/metabolismo , Pesquisa Translacional Biomédica
12.
Circ Res ; 121(4): 424-438, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28620066

RESUMO

RATIONALE: Acute pulmonary oxygen sensing is essential to avoid life-threatening hypoxemia via hypoxic pulmonary vasoconstriction (HPV) which matches perfusion to ventilation. Hypoxia-induced mitochondrial superoxide release has been suggested as a critical step in the signaling pathway underlying HPV. However, the identity of the primary oxygen sensor and the mechanism of superoxide release in acute hypoxia, as well as its relevance for chronic pulmonary oxygen sensing, remain unresolved. OBJECTIVES: To investigate the role of the pulmonary-specific isoform 2 of subunit 4 of the mitochondrial complex IV (Cox4i2) and the subsequent mediators superoxide and hydrogen peroxide for pulmonary oxygen sensing and signaling. METHODS AND RESULTS: Isolated ventilated and perfused lungs from Cox4i2-/- mice lacked acute HPV. In parallel, pulmonary arterial smooth muscle cells (PASMCs) from Cox4i2-/- mice showed no hypoxia-induced increase of intracellular calcium. Hypoxia-induced superoxide release which was detected by electron spin resonance spectroscopy in wild-type PASMCs was absent in Cox4i2-/- PASMCs and was dependent on cysteine residues of Cox4i2. HPV could be inhibited by mitochondrial superoxide inhibitors proving the functional relevance of superoxide release for HPV. Mitochondrial hyperpolarization, which can promote mitochondrial superoxide release, was detected during acute hypoxia in wild-type but not Cox4i2-/- PASMCs. Downstream signaling determined by patch-clamp measurements showed decreased hypoxia-induced cellular membrane depolarization in Cox4i2-/- PASMCs compared with wild-type PASMCs, which could be normalized by the application of hydrogen peroxide. In contrast, chronic hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling were not or only slightly affected by Cox4i2 deficiency, respectively. CONCLUSIONS: Cox4i2 is essential for acute but not chronic pulmonary oxygen sensing by triggering mitochondrial hyperpolarization and release of mitochondrial superoxide which, after conversion to hydrogen peroxide, contributes to cellular membrane depolarization and HPV. These findings provide a new model for oxygen-sensing processes in the lung and possibly also in other organs.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Pulmão/metabolismo , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Animais , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Humanos , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética
13.
Cells ; 13(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38920698

RESUMO

Subtle changes in the membrane potential of pulmonary arterial smooth muscle cells (PASMCs) are pivotal for controlling pulmonary vascular tone, e.g., for initiating Hypoxic Pulmonary Vasoconstriction, a vital mechanism of the pulmonary circulation. In our study, we evaluated the ability of the fluorescence resonance energy transfer (FRET)-based voltage-sensor Mermaid to detect such subtle changes in membrane potential. Mouse PASMCs were isolated and transduced with Mermaid-encoding lentiviral vectors before the acceptor/donor emission ratio was assessed via live cell FRET-imaging. Mermaid's sensitivity was tested by applying specific potassium chloride (KCl) concentrations. These KCl concentrations were previously validated by patch clamp recordings to induce depolarization with predefined amplitudes that physiologically occur in PASMCs. Mermaid's emission ratio dose-dependently increased upon depolarization with KCl. However, Mermaid formed unspecific intracellular aggregates, which limited the usefulness of this voltage sensor. When analyzing the membrane rim only to circumvent these unspecific signals, Mermaid was not suitable to resolve subtle changes in the membrane potential of ≤10 mV. In summary, we found Mermaid to be a suitable alternative for reliably detecting qualitative membrane voltage changes of more than 10 mV in primary mouse PASMCs. However, one should be aware of the limitations associated with this voltage sensor.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Potenciais da Membrana , Miócitos de Músculo Liso , Animais , Transferência Ressonante de Energia de Fluorescência/métodos , Camundongos , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/fisiologia , Cloreto de Potássio/farmacologia , Camundongos Endogâmicos C57BL
14.
Aging Dis ; 15(2): 911-926, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37548932

RESUMO

The mitochondrial adaptor protein p66Shc has been suggested to control life span in mice via the release of hydrogen peroxide. However, the role of p66Shc in lung aging remains unsolved. Thus, we investigated the effects of p66Shc-/- on the aging of the lung and pulmonary circulation. In vivo lung and cardiac characteristics were investigated in p66Shc-/- and wild type (WT) mice at 3, 12, and 24 months of age by lung function measurements, micro-computed tomography (µCT), and echocardiography. Alveolar number and muscularization of small pulmonary arteries were measured by stereology and vascular morphometry, respectively. Protein and mRNA levels of senescent markers were measured by western blot and PCR, respectively. Lung function declined similarly in WT and p66Shc-/- mice during aging. However, µCT analyses and stereology showed slightly enhanced signs of aging-related parameters in p66Shc-/- mice, such as a decline of alveolar density. Accordingly, p66Shc-/- mice showed higher protein expression of the senescence marker p21 in lung homogenate compared to WT mice of the corresponding age. Pulmonary vascular remodeling was increased during aging, but aged p66Shc-/- mice showed similar muscularization of pulmonary vessels and hemodynamics like WT mice. In the heart, p66Shc-/- prevented the deterioration of right ventricular (RV) function but promoted the decline of left ventricular (LV) function during aging. p66Shc-/- affects the aging process of the lung and the heart differently. While p66Shc-/- slightly accelerates lung aging and deteriorates LV function in aged mice, it seems to exert protective effects on RV function during aging.


Assuntos
Envelhecimento , Pulmão , Animais , Camundongos , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteínas Adaptadoras da Sinalização Shc/genética , Microtomografia por Raio-X , Envelhecimento/genética , Pulmão/diagnóstico por imagem , Oxirredução
15.
ERJ Open Res ; 9(2)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36891080

RESUMO

Background: The brain-derived neurotrophic factor (BDNF) may promote development of pulmonary hypertension and right ventricular (RV) failure. However, BDNF plasma levels were decreased in patients with left ventricular (LV) failure. Therefore, we investigated BDNF plasma levels in pulmonary hypertension patients and the role of BDNF in mouse models of pulmonary hypertension and isolated RV failure. Methods: BDNF plasma levels were correlated to pulmonary hypertension in two patient cohorts, including either post- and pre-capillary pulmonary hypertension patients (first cohort) or only pre-capillary pulmonary hypertension patients (second cohort). In the second cohort, RV dimensions and load-independent function were determined by imaging and pressure-volume catheter measurements, respectively. For induction of isolated RV pressure overload, heterozygous Bdnf knockout (Bdnf+/- ) mice were subjected to pulmonary arterial banding (PAB). For induction of pulmonary hypertension, mice with inducible knockout of BDNF in smooth muscle cells (Bdnf/Smmhc knockout) were exposed to chronic hypoxia. Results: Plasma BDNF levels were decreased in patients with pulmonary hypertension. Following adjustment for covariables, BDNF levels negatively correlated in both cohorts with central venous pressure. In the second cohort, BDNF levels additionally negatively correlated with RV dilatation. In animal models, BDNF downregulation attenuated RV dilatation in Bdnf+ /- mice after PAB or hypoxic Bdnf/Smmhc knockout mice, although they developed pulmonary hypertension to a similar extent. Conclusions: Similar to LV failure, circulating levels of BDNF were decreased in pulmonary hypertension patients, and low BDNF levels were associated with right heart congestion. Decreased BDNF levels did not worsen RV dilatation in animal models, and thus, may be the consequence, but not the cause of RV dilatation.

16.
Front Physiol ; 13: 1080875, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569761

RESUMO

Chronic hypoxia-induced pulmonary hypertension (CHPH) is a severe disease that is characterized by increased proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) leading to pulmonary vascular remodeling. The resulting increase in pulmonary vascular resistance (PVR) causes right ventricular hypertrophy and ultimately right heart failure. In addition, increased PVR can also be a consequence of hypoxic pulmonary vasoconstriction (HPV) under generalized hypoxia. Increased proliferation and migration of PASMCs are often associated with high intracellular Ca2+ concentration. Recent publications suggest that Ca2+-permeable nonselective classical transient receptor potential (TRPC) proteins-especially TRPC1 and 6-are crucially involved in acute and sustained hypoxic responses and the pathogenesis of CHPH. The aim of our study was to investigate whether the simultaneous deletion of TRPC proteins 1, 3 and 6 protects against CHPH-development and affects HPV in mice. We used a mouse model of chronic hypoxia as well as isolated, ventilated and perfused mouse lungs and PASMC cell cultures. Although right ventricular systolic pressure as well as echocardiographically assessed PVR and right ventricular wall thickness (RVWT) were lower in TRPC1, 3, 6-deficient mice, these changes were not related to a decreased degree of pulmonary vascular muscularization and a reduced proliferation of PASMCs. However, both acute and sustained HPV were almost absent in the TRPC1, 3, 6-deficient mice and their vasoconstrictor response upon KCl application was reduced. This was further validated by myographical experiments. Our data revealed that 1) TRPC1, 3, 6-deficient mice are partially protected against development of CHPH, 2) these changes may be caused by diminished HPV and not an altered pulmonary vascular remodeling.

17.
Cells ; 12(1)2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36611917

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. In addition to chronic bronchitis and emphysema, patients often develop at least mild pulmonary hypertension (PH). We previously demonstrated that inhibition of inducible nitric oxide synthase (iNOS) prevents and reverses emphysema and PH in mice. Interestingly, strong iNOS upregulation was found in alveolar epithelial type II cells (AECII) in emphysematous murine lungs, and peroxynitrite, which can be formed from iNOS-derived NO, was shown to induce AECII apoptosis in vitro. However, the specific cell type(s) that drive(s) iNOS-dependent lung regeneration in emphysema/PH has (have) not been identified yet. AIM: we tested whether iNOS knockout in AECII affects established elastase-induced emphysema in mice. METHODS: four weeks after a single intratracheal instillation of porcine pancreatic elastase for the induction of emphysema and PH, we induced iNOS knockout in AECII in mice, and gave an additional twelve weeks for the potential recovery. RESULTS: iNOS knockout in AECII did not reduce elastase-induced functional and structural lung changes such as increased lung compliance, decreased mean linear intercept and increased airspace, decreased right ventricular function, increased right ventricular systolic pressure and increased pulmonary vascular muscularization. In vitro, iNOS inhibition did not reduce apoptosis of AECII following exposure to a noxious stimulus. CONCLUSION: taken together, our data demonstrate that iNOS deletion in AECII is not sufficient for the regeneration of emphysematous murine lungs, and suggest that iNOS expression in pulmonary vascular or stromal cells might be critically important in this regard.


Assuntos
Enfisema , Enfisema Pulmonar , Camundongos , Suínos , Animais , Elastase Pancreática/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/metabolismo , Epitélio/metabolismo
18.
Cardiovasc Res ; 118(1): 305-315, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33119054

RESUMO

AIMS: The pulmonary vascular tone and hypoxia-induced alterations of the pulmonary vasculature may be regulated by the mitochondrial membrane permeability transition pore (mPTP) that controls mitochondrial calcium load and apoptosis. We thus investigated, if the mitochondrial proteins p66shc and cyclophilin D (CypD) that regulate mPTP opening affect the pulmonary vascular tone. METHODS AND RESULTS: Mice deficient for p66shc (p66shc-/-), CypD (CypD-/-), or both proteins (p66shc/CypD-/-) exhibited decreased pulmonary vascular resistance (PVR) compared to wild-type mice determined in isolated lungs and in vivo. In contrast, systemic arterial pressure was only lower in CypD-/- mice. As cardiac function and pulmonary vascular remodelling did not differ between genotypes, we determined alterations of vascular contractility in isolated lungs and calcium handling in pulmonary arterial smooth muscle cells (PASMC) as underlying reason for decreased PVR. Potassium chloride (KCl)-induced pulmonary vasoconstriction and KCl-induced cytosolic calcium increase determined by Fura-2 were attenuated in all gene-deficient mice. In contrast, KCl-induced mitochondrial calcium increase determined by the genetically encoded Mito-Car-GECO and calcium retention capacity were increased only in CypD-/- and p66shc/CypD-/- mitochondria indicating that decreased mPTP opening affected KCl-induced intracellular calcium peaks in these cells. All mouse strains showed a similar pulmonary vascular response to chronic hypoxia, while acute hypoxic pulmonary vasoconstriction was decreased in gene-deficient mice indicating that CypD and p66shc regulate vascular contractility but not remodelling. CONCLUSIONS: We conclude that p66shc specifically regulates the pulmonary vascular tone, while CypD also affects systemic pressure. However, only CypD acts via regulation of mPTP opening and mitochondrial calcium regulation.


Assuntos
Pressão Arterial , Cálcio/metabolismo , Hipertensão Pulmonar/enzimologia , Mitocôndrias/enzimologia , Peptidil-Prolil Isomerase F/deficiência , Artéria Pulmonar/enzimologia , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/deficiência , Vasoconstrição , Animais , Sinalização do Cálcio , Proliferação de Células , Células Cultivadas , Peptidil-Prolil Isomerase F/genética , Modelos Animais de Doenças , Deleção de Genes , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Hipóxia/complicações , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Artéria Pulmonar/fisiopatologia , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Remodelação Vascular , Resistência Vascular
19.
Cancers (Basel) ; 13(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885137

RESUMO

Aneuploidy, an imbalance number of chromosomes, is frequently observed in lung cancer and inversely correlates with patient survival. Paradoxically, an aneuploid karyotype has detrimental consequences on cellular fitness, and it has been proposed that aneuploid cells, at least in vitro, generate signals for their own elimination by NK cells. However, how aneuploidy affects tumor progression as well as the interplay between aneuploid tumor cells and the tumor microenvironment is still unclear. We generated a new mouse model in which overexpression of Mad2 was almost entirely restricted to normal epithelial cells of the lung, and combined it with an oncogenic Eml4-Alk chromosome inversion. This combination resulted in a higher tumor burden and an increased number of tumor nodules compared to control Eml4-Alk mice alone. The FISH analysis detected significant differences in the aneuploidy levels in the non-tumor regions of Eml4-Alk+Mad2 compared to Eml4-Alk alone, although both tumor groups presented similar levels of aneuploidy. We further show that aneuploid cells in the non-tumor areas adjacent to lung tumors recruit immune cells, such as tumor-associated macrophages. In fact, these areas presented an increase in alveolar macrophages, neutrophils, decreased cytotoxic CD8+ T cells, and IFN-γ, suggesting that aneuploid cells in the surrounding tumor areas create an immunosuppressive signature that might contribute to lung tumor initiation and progression.

20.
Small Methods ; 5(10): e2100470, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34927935

RESUMO

The ability to sense changes in oxygen availability is fundamentally important for the survival of all aerobic organisms. However, cellular oxygen sensing mechanisms and pathologies remain incompletely understood and studies of acute oxygen sensing, in particular, have produced inconsistent results. Current methods cannot simultaneously measure the key cellular events in acute hypoxia (i.e., changes in redox state, electrophysiological properties, and mechanical responses) at controlled partial pressures of oxygen (pO2 ). The lack of such a comprehensive method essentially contributes to the discrepancies in the field. A sealed microfluidic system that combines i) Raman spectroscopy, ii) patch-clamp electrophysiology, and iii) live-cell imaging under precisely controlled pO2 have therefore been developed. Merging these modalities allows label-free and simultaneous observation of oxygen-dependent alterations in multiple cellular redox couples, membrane potential, and cellular contraction. This technique is adaptable to any cell type and allows in-depth insight into acute oxygen sensing processes underlying various physiologic and pathologic conditions.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Músculo Liso Vascular/citologia , Oxigênio/análise , Artéria Pulmonar/citologia , Animais , Técnicas Biossensoriais/instrumentação , Hipóxia Celular , Células Cultivadas , Desenho de Equipamento , Potenciais da Membrana , Camundongos , Músculo Liso Vascular/metabolismo , Técnicas de Patch-Clamp , Artéria Pulmonar/metabolismo , Análise de Célula Única , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa