RESUMO
BACKGROUND: microRNAs (miRNAs) are known as potent gene expression regulators, and several studies have revealed the prognostic value of miRNAs in acute myeloid leukemia (AML) patient survival. Recently, strong evidence has indicated that miRNAs can be transported by exosomes (EXOs) from cancer cells to recipient immune microenvironment (IME) cells. RESULTS: We found that AML blast-released EXOs enhance CD3 T-cell apoptosis in both CD4 and CD8 T cells. We hypothesized that miRNAs present in EXOs are key players in mediating the changes observed in AML T-cell survival. We found that miR-24-3p, a commonly overexpressed miRNA in AML, was present in released EXOs, suggesting that EXO-miR-24-3p was linked to the increased miR-24-3p levels detected in isolated AML T cells. These results were corroborated by ex vivo-generated miR-24-3p-enriched EXOs, which showed that miR-24-3p-EXOs increased apoptosis and miR-24-3p levels in T cells. We also demonstrated that overexpression of miR-24-3p increased T-cell apoptosis and affected T-cell proliferation by directly targeting DENN/MADD expression and indirectly altering the NF-κB, p-JAK/STAT, and p-ERK signaling pathways but promoting regulatory T-cell (Treg) development. CONCLUSIONS: These results highlight a mechanism through which AML blasts indirectly impede T-cell function via transferred exosomal miR-24-3p. In conclusion, by characterizing the signaling network regulated by individual miRNAs in the leukemic IME, we aimed to discover new nonleukemic immune targets to rescue the potent antitumor function of T cells against AML blasts. Video Abstract.
Assuntos
Exossomos , Leucemia Mieloide Aguda , MicroRNAs , Humanos , NF-kappa B , Transdução de Sinais , MicroRNAs/genética , Ativação Linfocitária , Leucemia Mieloide Aguda/genética , Microambiente Tumoral , Fatores de Troca do Nucleotídeo Guanina , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de MorteRESUMO
PURPOSE OF REVIEW: Radiotherapy has been proven to be useful but insufficient in melanoma management due to the intrinsic radioresistance of melanoma cells. Elucidation of the molecular mechanisms and pathways related to resistance/sensitivity to radiotherapy in melanoma is of paramount importance. In this review, we will summarize and discuss the recent 'discoveries' and advances in radiosensitivity determinants in melanoma. RECENT FINDINGS: The different levels of radiosensitivity among the various melanoma tumors could be attributed to the DNA damage signaling and repair proteins, tumor microenvironment, hypoxia, cell metabolism, glutathione and redox balance, protein kinase signaling pathways as well as pigmentation and melanin content. SUMMARY: It is therapeutically important to elucidate the factors involved in radiation resistance/sensitivity of melanoma. More importantly, improving radiosensitivity may 'widen the clinical utility' in melanoma of this important therapeutic modality.
Assuntos
Melanoma , Tolerância a Radiação , Dano ao DNA , Humanos , Melanoma/tratamento farmacológico , Tolerância a Radiação/fisiologia , Microambiente TumoralRESUMO
PURPOSE OF REVIEW: Drug development is the process of bringing new anticancer agents into clinical practice. From the basic research to clinical research each step is essential and intimately linked. The aim of this review is to describe emerging preclinical models and to provide an overview of selected drugs recently developed in oncology. RECENT FINDINGS: Preclinical models reproducing human immune-tumor interactions, 3D cell cultures and microfluidic platforms are of great interest for the development of immunotherapies and combination therapies and offer the opportunity to better understand the interplay between cancer and stromal cells.Following a better biological understanding of cancer and advances in precision oncology, new exciting drugs (e.g. antibodies-drugs conjugates [ADCs], immunotherapeutic strategies, molecular-targeted therapies) have entered the field of clinical research and even clinical practice. SUMMARY: Recent improvements in preclinical models will allow an accurate selection of drug candidates for clinical research. Innovative drugs are currently being developed from early to later phases of development. An important remaining challenge in drug development is to set up a new model of patient-centered clinical research to facilitate quick access to innovation and target-oriented trials.
Assuntos
Neoplasias , Preparações Farmacêuticas , Técnicas de Cultura de Células em Três Dimensões , Desenvolvimento de Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Medicina de PrecisãoRESUMO
BACKGROUND: Age-related genetic changes in lymphocyte subsets are not currently well documented. BACH2 is a transcription factor that plays an important role in immune-mediated homeostasis by tightly regulating PRDM1 expression in both B-cells and T-cells. BACH2 gene expression is highly sensitive to DNA damage in aged mice. This concept led us to investigate the variation in BACH2 and also PRDM1 expression in major lymphocyte subsets with age. METHODS: Lymphocyte subsets from 60 healthy donors, aged from 20 to 90 years, and 41 untreated chronic lymphocytic leukemia patients were studied. BACH2 and PRDM1 gene expression was analyzed by real-time quantitative PCR. BACH2 gene expression was correlated with its protein expression. Lymphocyte apoptosis was evaluated after intracellular oxidative stress-inducing etoposide treatment of T and B cells. RESULTS: Our analysis shows BACH2 mRNA downregulation with age in healthy donor CD4+, CD8+ T-cells and CD19+ B-cells. Decreased BACH2 expression was also correlated with an age-related reduction in CD8 + CD28+ T-cells. We found a strong correlation between age-related BACH2 downregulation and decreased CD4+ T-cell and CD19+ B-cell apoptosis. PRDM1, as expected, was significantly upregulated in CD4+ T-cells, CD8+ T-cells and CD19+ B-cells, and inversely correlated with BACH2. A comparison of untreated chronic lymphocytic leukemia patients with age-matched healthy donors reveals that BACH2 mRNA expression was further reduced in CD4+ T-cells, CD8+ T-cells and leukemic-B cells. PRDM1 gene expression was consequently significantly upregulated in CD4+ and CD8+ T-cells in chronic lymphocytic leukemia patients but not in their leukemic B-cells. CONCLUSION: Overall, our data suggest that BACH2 and PRDM1 genes are significantly correlated with age in human immune cells and may be involved in immunosenescence.
Assuntos
Envelhecimento/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Leucemia Linfocítica Crônica de Células B/imunologia , Subpopulações de Linfócitos/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Senescência Celular/imunologia , Regulação para Baixo/imunologia , Feminino , Voluntários Saudáveis , Humanos , Leucemia Linfocítica Crônica de Células B/sangue , Leucemia Linfocítica Crônica de Células B/patologia , Subpopulações de Linfócitos/imunologia , Masculino , Pessoa de Meia-Idade , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/imunologia , RNA Mensageiro/metabolismo , Regulação para Cima/imunologia , Adulto JovemRESUMO
Mesenchymal stromal cells (MSCs) are multipotent adult cells with relevant biological properties making them interesting tools for cell-based therapy. These cells have the ability to home to sites of injury and secrete bioactive factors as part of their therapeutic functions. However, depending on the local environment, diverse functions of MSCs can be modulated and thus can influence their therapeutic value. The specific cytokine milieu within the site of inflammation is vital in determining the fate and cell behaviors of MSCs. Indeed, inflammatory signals (called as inflammatory priming), may induce critical changes on the phenotype, multilineage potential, hematopoietic support and immunomodulatory capacity of MSCs. Thus, for appropriate clinical application of MSCs, it is important to well know and understand these effects. In summary, investigating MSC interactions with the inflammatory environment is necessary to empower the therapeutic value of MSCs.
Assuntos
Inflamação/imunologia , Células-Tronco Mesenquimais/imunologia , Animais , Humanos , Imunomodulação , FenótipoRESUMO
In the original article [...].
RESUMO
Radiotherapy is part of the standard of care treatment for a great majority of cancer patients. As a result of radiation, both tumor cells and the environment around them are affected directly by radiation, which mainly primes but also might limit the immune response. Multiple immune factors play a role in cancer progression and response to radiotherapy, including the immune tumor microenvironment and systemic immunity referred to as the immune landscape. A heterogeneous tumor microenvironment and the varying patient characteristics complicate the dynamic relationship between radiotherapy and this immune landscape. In this review, we will present the current overview of the immunological landscape in relation to radiotherapy in order to provide insight and encourage research to further improve cancer treatment. An investigation into the impact of radiation therapy on the immune landscape showed in several cancers a common pattern of immunological responses after radiation. Radiation leads to an upsurge in infiltrating T lymphocytes and the expression of programmed death ligand 1 (PD-L1) which can hint at a benefit for the patient when combined with immunotherapy. In spite of this, lymphopenia in the tumor microenvironment of 'cold' tumors or caused by radiation is considered to be an important obstacle to the patient's survival. In several cancers, a rise in the immunosuppressive populations is seen after radiation, mainly pro-tumoral M2 macrophages and myeloid-derived suppressor cells (MDSCs). As a final point, we will highlight how the radiation parameters themselves can influence the immune system and, therefore, be exploited to the advantage of the patient.
Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Imunoterapia , Microambiente TumoralRESUMO
Despite important advances in the treatment of metastatic melanoma with the development of MAPK-targeted agents and immune checkpoint inhibitors, the majority of patients either do not respond to therapies or develop acquired resistance. Furthermore, there is no effective targeted therapy currently available for BRAF wild-type melanomas (approximately 50% of cutaneous melanoma). Thus, there is a compelling need for new efficient targeted therapies. Prohibitins (PHBs) are overexpressed in several types of cancers and implicated in the regulation of signaling networks that promote cell invasion and resistance to cell apoptosis. Herein, we show that PHBs are highly expressed in melanoma and are associated with not only poor survival but also with resistance to BRAFi/MEKi. We designed and identified novel specific PHB inhibitors that can inhibit melanoma cell growth in 3D spheroid models and a large panel of representative cell lines with different molecular subtypes, including those with intrinsic and acquired resistance to MAPKi, by significantly moderating both MAPK (CRAF-ERK axis) and PI3K/AKT pathways, and inducing apoptosis through the mitochondrial pathway and up-regulation of p53. In addition, autophagy inhibition enhances the antitumor efficacy of these PHB ligands. More important, these ligands can act in synergy with MAPKi to more efficiently inhibit cell growth and overcome drug resistance in both BRAF wild-type and mutant melanoma. In conclusion, targeting PHBs represents a very promising therapeutic strategy in melanoma, regardless of mutational status.
Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/patologia , Neoplasias Cutâneas/tratamento farmacológico , Proibitinas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas B-raf/metabolismo , Ligantes , Inibidores de Proteínas Quinases/farmacologia , Resistencia a Medicamentos AntineoplásicosRESUMO
Melanoma is known to be a radioresistant cancer. Melanoma radioresistance can be due to several factors such as pigmentation, antioxidant defenses and high Deoxyribonucleic acid (DNA) repair efficacy. However, irradiation induces intracellular translocation of RTKs, including cMet, which regulates response to DNA damage activating proteins and promotes DNA repair. Accordingly, we hypothesized that co-targeting DNA repair (PARP-1) and relevant activated RTKs, c-Met in particular, may radiosensitize wild-type B-Raf Proto-Oncogene, Serine/Threonine Kinase (WTBRAF) melanomas where RTKs are often upregulated. Firstly, we found that PARP-1 is highly expressed in melanoma cell lines. PARP-1 inhibition by Olaparib or its KO mediates melanoma cell sensitivity to radiotherapy (RT). Similarly, specific inhibition of c-Met by Crizotinib or its KO radiosensitizes the melanoma cell lines. Mechanistically, we show that RT causes c-Met nuclear translocation to interact with PARP-1 promoting its activity. This can be reversed by c-Met inhibition. Accordingly, RT associated with the inhibition of both c-Met and PARP-1 resulted in a synergistic effect not only on tumor growth inhibition but also on tumor regrowth control in all animals following the stop of the treatment. We thus show that combining PARP and c-Met inhibition with RT appears a promising therapeutic approach in WTBRAF melanoma.
RESUMO
In the original article [...].
RESUMO
Melanoma cells are notorious for their high plasticity and ability to switch back and forth between various melanoma cell states, enabling the adaptation to sub-optimal conditions and therapeutics. This phenotypic plasticity, which has gained more attention in cancer research, is proposed as a new paradigm for melanoma progression. In this review, we provide a detailed and deep comprehensive recapitulation of the complex spectrum of phenotype switching in melanoma, the key regulator factors, the various and new melanoma states, and corresponding signatures. We also present an extensive description of the role of epigenetic modifications (chromatin remodeling, methylation, and activities of long non-coding RNAs/miRNAs) and metabolic rewiring in the dynamic switch. Furthermore, we elucidate the main role of the crosstalk between the tumor microenvironment (TME) and oxidative stress in the regulation of the phenotype switching. Finally, we discuss in detail several rational therapeutic approaches, such as exploiting phenotype-specific and metabolic vulnerabilities and targeting components and signals of the TME, to improve the response of melanoma patients to treatments.
Assuntos
Melanoma , MicroRNAs , Epigênese Genética , Humanos , Melanoma/patologia , MicroRNAs/genética , Fenótipo , Microambiente TumoralRESUMO
Over the last years, the oligometastatic disease state has gained more and more interest, and randomized trials are now suggesting an added value of stereotactic radiotherapy on all macroscopic disease in oligometastatic patients; but what barriers could impede widespread disease in some patients? In this review, we first discuss the concept of oligometastatic disease and some examples of clinical evidence. We then explore the route to dissemination: the hurdles a tumoral clone has to overtake before it can produce efficient and widespread dissemination. The spectrum theory argues that the range of metastatic patterns encountered in the clinic is the consequence of gradually obtained metastatic abilities of the tumor cells. Tumor clones can obtain these capabilities by Darwinian evolution, hence early in their genetic progression tumors might produce only a limited number of metastases. We illustrate selective dissemination by discussing organ tropism, the preference of different cancer (sub)types to metastasize to certain organs. Finally we discuss biomarkers that may help to distinguish the oligometastatic state.
RESUMO
The oxygen sensor prolyl hydroxylase domain 2 (PHD2) plays an important role in cell hypoxia adaptation by regulating the stability of HIF proteins (HIF1α and HIF2α) in numerous cell types, including T lymphocytes. The role of oxygen sensor on immune cells, particularly on regulatory T cell (Treg) function, has not been fully elucidated. The purpose of our study was to evaluate the role of PHD2 in the regulation of Treg phenotype and function. We demonstrate herein that selective ablation of PHD2 expression in Treg (PHD2ΔTreg mice) leads to a spontaneous systemic inflammatory syndrome, as evidenced by weight loss, development of a rectal prolapse, splenomegaly, shortening of the colon, and elevated expression of IFN-γ in the mesenteric lymph nodes, intestine, and spleen. PHD2 deficiency in Tregs led to an increased number of activated CD4 conventional T cells expressing a Th1-like effector phenotype. Concomitantly, the expression of innate-type cytokines such as Il1b, Il12a, Il12b, and Tnfa was found to be elevated in peripheral (gut) tissues and spleen. PHD2ΔTreg mice also displayed an enhanced sensitivity to dextran sodium sulfate-induced colitis and toxoplasmosis, suggesting that PHD2-deficient Tregs did not efficiently control inflammatory response in vivo, particularly those characterized by IFN-γ production. Further analysis revealed that Treg dysregulation was largely prevented in PHD2-HIF2α (PHD2-HIF2αΔTreg mice), but not in PHD2-HIF1α (PHD2-HIF1αΔTreg mice) double KOs, suggesting an important and possibly selective role of the PHD2-HIF2α axis in the control of Treg function. Finally, the transcriptomic analysis of PHD2-deficient Tregs identified the STAT1 pathway as a target of the PHD2-HIF2α axis in regulatory T cell phenotype and in vivo function.
Assuntos
Colite , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Linfócitos T Reguladores , Animais , Colite/induzido quimicamente , Subunidade alfa do Fator 1 Induzível por Hipóxia , Camundongos , Oxigênio , Pró-Colágeno-Prolina Dioxigenase , Prolil HidroxilasesRESUMO
Potential intrinsic resistance mechanisms to regorafenib were explored after short exposure (3 days) on five CRC cell lines (HCT-116, SW1116, LS-1034, SW480, Caco-2). The observation of senescence-like features led to the investigation of a drug-initiated phenotype switch. Following long-term exposure (12 months) of HCT-116 and SW480 cell lines to regorafenib, we developed resistant models to explore acquired resistance. SW480 cells demonstrated senescent-like properties, including a cell arrest in the late G2/prophase cell cycle stage and a statistically significant decrease in the expression of G1 Cyclin-Dependent Kinase inhibitors and key cell cycle regulators. A specific senescence-associated secretome was also observed. In contrast, HCT-116 treated cells presented early senescent features and developed acquired resistance triggering EMT and a more aggressive phenotype over time. The gained migration and invasion ability by long-exposed cells was associated with the increased expression level of key cellular and extracellular EMT-related factors. The PI3K/AKT pathway was a significant player in the acquired resistance of HCT-116 cells, possibly related to a PI3KCA mutation in this cell line. Our findings provide new insights into the phenotypic plasticity of CRC cells able, under treatment pressure, to acquire a stable TIS or to use an early senescence state to undergo EMT.
Assuntos
Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Humanos , Transição Epitelial-Mesenquimal/genética , Fosfatidilinositol 3-Quinases , Células CACO-2 , Resistencia a Medicamentos Antineoplásicos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismoRESUMO
MAPK (mitogen activated protein kinase) and PI3K/AKT (Phosphatidylinositol-3-Kinase and Protein Kinase B) pathways play a key role in melanoma progression and metastasis that are regulated by receptor tyrosine kinases (RTKs). Although RTKs are mutated in a small percentage of melanomas, several receptors were found up regulated/altered in various stages of melanoma initiation, progression, or metastasis. Targeting RTKs remains a significant challenge in melanoma, due to their variable expression across different melanoma stages of progression and among melanoma subtypes that consequently affect response to treatment and disease progression. In this review, we discuss in details the activation mechanism of several key RTKs: type III: c-KIT (mast/stem cell growth factor receptor); type I: EGFR (Epidermal growth factor receptor); type VIII: HGFR (hepatocyte growth factor receptor); type V: VEGFR (Vascular endothelial growth factor), structure variants, the function of their structural domains, and their alteration and its association with melanoma initiation and progression. Furthermore, several RTK inhibitors targeting the same receptor were tested alone or in combination with other therapies, yielding variable responses among different melanoma groups. Here, we classified RTK inhibitors by families and summarized all tested drugs in melanoma indicating the rationale behind the use of these drugs in each melanoma subgroups from preclinical studies to clinical trials with a specific focus on their purpose of treatment, resulted effect, and outcomes.
RESUMO
Amplification or activating mutations of c-Kit are a frequent oncogenic alteration, which occurs commonly in acral and mucosal melanoma. Among c-Kit inhibitors, dasatinib is the most active due to its ability to bind both active and inactive conformations of the receptor. However, its use as a single agent in melanoma showed limited clinical benefit. We first found that sensitivity to dasatinib is restricted to melanoma cell lines harboring c-Kit alteration but, unexpectedly, we observed lower effect at higher concentrations that can readily be found in patient blood. We then investigated relevant pathway alterations and found complete inhibition of MAPK and PI3K/AKT pathways but an increase in MITF and its downstream target Bcl-2 through CRTC3 pathway, which turn on the CREB regulated transcription of MITF. More importantly, dasatinib upregulates MITF and Bcl-2 through SIK2 inhibition revealed by CRTC3 reduced phosphorylation, CREB transcription activation of MITF, MITF transcription activation of Bcl-2 as well as pigmentation. Furthermore, overexpression of MITF renders melanoma cells resistant to all dasatinib concentrations. Selective Bcl-2 inhibition by ABT-199 or Bcl-2 knockout restores the sensitivity of melanoma cells to dasatinib, validating the involvement of MITF and Bcl-2 axis in the resistance of melanoma to dasatinib. In conclusion, we showed for the first time that dasatinib in melanoma stimulates its proper mechanism of resistance, independently of MAPK and PI3K/AKT pathways reactivation commonly associated to secondary c-Kit mutations, but through CRTC3/MITF/Bcl-2 pathway activation at clinically relevant doses which may explain the weak clinical benefit of dasatinib in patients with melanoma. IMPLICATIONS: Dasatinib stimulates its proper mechanism of resistance through CRTC3/MITF/Bcl-2 pathway, which may explain its modest clinical efficiency in patients with melanoma.
Assuntos
Dasatinibe/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Melanoma/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Melanoma/genética , Melanoma/patologia , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Mutação , Proteínas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
TP53 mutation is one of the most frequent genetic alterations in head and neck squamous cell carcinoma (HNSCC) and results in an accumulation of p53 protein in tumor cells. This makes p53 an attractive target to improve HNSCC therapy by restoring the tumor suppressor activity of this protein. Therapeutic strategies targeting p53 in HNSCC can be divided into three categories related to three subtypes encompassing WT p53, mutated p53 and HPV-positive HNSCC. First, compounds targeting degradation or direct inhibition of WT p53, such as PM2, RITA, nutlin-3 and CH1iB, achieve p53 reactivation by affecting p53 inhibitors such as MDM2 and MDMX/4 or by preventing the breakdown of p53 by inhibiting the proteasomal complex. Second, compounds that directly affect mutated p53 by binding it and restoring the WT conformation and transcriptional activity (PRIMA-1, APR-246, COTI-2, CP-31398). Third, treatments that specifically affect HPV+ cancer cells by targeting the viral enzymes E6/E7 which are responsible for the breakdown of p53 such as Ad-E6/E7-As and bortezomib. In this review, we describe and discuss p53 regulation and its targeting in combination with existing therapies for HNSCC through a new classification of such cancers based on p53 mutation status and HPV infection.
RESUMO
Immunotherapy with checkpoint inhibitors opened new horizons in cancer treatment. Clinical trials for novel immunotherapies or unexplored combination regimens either need years of development or are simply impossible to perform like is the case in cancer patients with limited life expectancy. Thus, the need for preclinical models that rapidly and safely allow for a better understanding of underlying mechanisms, drug kinetics and toxicity leading to the selection of the best regimen to be translated into the clinic, is of high importance. Humanized mice that can bear both human immune system and human tumors, are increasingly used in recent preclinical immunotherapy studies and represent a remarkably unprecedented tool in this field. In this review, we describe, summarize, and discuss the recent advances of humanized mouse models used for cancer immunotherapy research and the challenges faced during their establishment. We also highlight the lack of preclinical studies using this model for radiotherapy-based research and argue that it can be a great asset to understand and answer many open questions around radiation therapy such as its presumed associated "abscopal effect".
RESUMO
The use of patient-derived primary cell cultures in cancer preclinical assays, including drug screens and genotoxic studies, has increased in recent years. However, their translational value is constrained by several limitations, including variability that can be caused by the culture conditions. Here, we show that the medium composition commonly used to propagate primary melanoma cultures has limited their representability of their tumor of origin and their cellular plasticity, and modified their sensitivity to therapy. Indeed, we established and compared cultures from different melanoma patients propagated in parallel in low-tyrosine (Ham's F10) or in high-tyrosine (Ham's F10 supplemented with tyrosine or RPMI1640 or DMEM) media. Tyrosine is the precursor of melanin biosynthesis, a process particularly active in differentiated melanocytes and melanoma cells. Unexpectedly, we found that the high tyrosine concentrations promoted an early phenotypic drift towards either a mesenchymal-like or senescence-like phenotype, and prevented the establishment of cultures of melanoma cells harboring differentiated features, which we show are frequently present in human clinical biopsies. Moreover, the invasive phenotype emerging in these culture conditions appeared irreversible and, as expected, associated with intrinsic resistance to MAPKi. In sharp contrast, differentiated melanoma cell cultures retained their phenotypes upon propagation in low-tyrosine medium, and importantly their phenotypic plasticity, a key hallmark of melanoma cells. Altogether, our findings underline the importance of culturing melanoma cells in low-tyrosine-containing medium in order to preserve their phenotypic identity of origin and cellular plasticity.
RESUMO
Post-transcriptional modifications of RNA constitute an emerging regulatory layer of gene expression. The demethylase fat mass- and obesity-associated protein (FTO), an eraser of N6-methyladenosine (m6A), has been shown to play a role in cancer, but its contribution to tumor progression and the underlying mechanisms remain unclear. Here, we report widespread FTO downregulation in epithelial cancers associated with increased invasion, metastasis and worse clinical outcome. Both in vitro and in vivo, FTO silencing promotes cancer growth, cell motility and invasion. In human-derived tumor xenografts (PDXs), FTO pharmacological inhibition favors tumorigenesis. Mechanistically, we demonstrate that FTO depletion elicits an epithelial-to-mesenchymal transition (EMT) program through increased m6A and altered 3'-end processing of key mRNAs along the Wnt signaling cascade. Accordingly, FTO knockdown acts via EMT to sensitize mouse xenografts to Wnt inhibition. We thus identify FTO as a key regulator, across epithelial cancers, of Wnt-triggered EMT and tumor progression and reveal a therapeutically exploitable vulnerability of FTO-low tumors.