Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 47(11): 909-920, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35606214

RESUMO

The histone variant H2A.Z has been extensively studied to understand its manifold DNA-based functions. In the past years, researchers identified its specific binding partners, the 'H2A.Z interactome', that convey H2A.Z-dependent chromatin changes. Here, we summarize the latest findings regarding vertebrate H2A.Z-associated factors and focus on their roles in gene activation and repression, cell cycle regulation, (neuro)development, and tumorigenesis. Additionally, we demonstrate how protein-protein interactions and post-translational histone modifications can fine-tune the complex interplay of H2A.Z-regulated gene expression. Last, we review the most recent results on interactors of the two isoforms H2A.Z.1 and H2A.Z.2.1, which differ in only three amino acids, and focus on cancer-associated mutations of H2A and H2A.Z, which reveal fascinating insights into the functional importance of such minuscule changes.


Assuntos
Cromatina , Histonas , Aminoácidos/metabolismo , Montagem e Desmontagem da Cromatina , Histonas/metabolismo , Nucleossomos , Isoformas de Proteínas/genética
2.
Nucleic Acids Res ; 2024 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-39460621

RESUMO

The evolutionarily conserved histone variant H2A.Z plays a crucial role in various DNA-based processes, but the mechanisms underlying its activity are not completely understood. Recently, we identified the zinc finger (ZF) protein ZNF512B as a protein associated with H2A.Z, HMG20A and PWWP2A. Here, we report that high levels of ZNF512B expression lead to nuclear protein and chromatin aggregation foci that form in a manner that is dependent on the ZF domains of ZNF512B. Notably, we demonstrate ZNF512B binding to the nucleosome remodeling and deacetylase (NuRD) complex. We discover a conserved amino acid sequence within ZNF512B that resembles the NuRD-interaction motif (NIM) previously identified in FOG-1 and other transcriptional regulators. By solving the crystal structure of this motif bound to the NuRD component RBBP4 and by applying several biochemical and biophysical assays, we demonstrate that this internal NIM is both necessary and sufficient for robust and high-affinity NuRD binding. Transcriptome analyses and reporter assays identify ZNF512B as a repressor of gene expression that can act in both NuRD-dependent and -independent ways. Our study might have implications for diseases in which ZNF512B expression is deregulated, such as cancer and neurodegenerative diseases, and hints at the existence of more proteins as potential NuRD interactors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa