Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982667

RESUMO

Borreliella (syn. Borrelia) burgdorferi is a spirochete bacterium that causes tick-borne Lyme disease. Along its lifecycle B. burgdorferi develops several pleomorphic forms with unclear biological and medical relevance. Surprisingly, these morphotypes have never been compared at the global transcriptome level. To fill this void, we grew B. burgdorferi spirochete, round body, bleb, and biofilm-dominated cultures and recovered their transcriptomes by RNAseq profiling. We found that round bodies share similar expression profiles with spirochetes, despite their morphological differences. This sharply contrasts to blebs and biofilms that showed unique transcriptomes, profoundly distinct from spirochetes and round bodies. To better characterize differentially expressed genes in non-spirochete morphotypes, we performed functional, positional, and evolutionary enrichment analyses. Our results suggest that spirochete to round body transition relies on the delicate regulation of a relatively small number of highly conserved genes, which are located on the main chromosome and involved in translation. In contrast, spirochete to bleb or biofilm transition includes substantial reshaping of transcription profiles towards plasmids-residing and evolutionary young genes, which originated in the ancestor of Borreliaceae. Despite their abundance the function of these Borreliaceae-specific genes is largely unknown. However, many known Lyme disease virulence genes implicated in immune evasion and tissue adhesion originated in this evolutionary period. Taken together, these regularities point to the possibility that bleb and biofilm morphotypes might be important in the dissemination and persistence of B. burgdorferi inside the mammalian host. On the other hand, they prioritize the large pool of unstudied Borreliaceae-specific genes for functional characterization because this subset likely contains undiscovered Lyme disease pathogenesis genes.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Animais , Humanos , Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Doença de Lyme/genética , Mamíferos/metabolismo , Transcriptoma
2.
Exp Appl Acarol ; 74(2): 191-199, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29383532

RESUMO

Borrelia miyamotoi, a spirochete found in the hard tick Ixodes ricinus, is thought to cause relapsing fever. The disease caused by this bacterium can manifest with high fever, fatigue and other symptoms. It may also lead to central nervous system involvement with symptoms similar to meningoencephalitis. DNA from ticks from the greater Augsburg region in Germany was subjected to qPCR for Borrelia spp., followed by nested PCR and subsequent sequencing for species identification of the qPCR positive samples. From 112 ticks, 20 were found to be positive for Borrelia. The DNA sequenced showed 50% Borrelia afzelli, 15% Borrelia garinii, 5% Borrelia valaisiana and one sequence was identified as Borrelia miyamotoi. The positive identification of Borrelia miyamotoi is unlikely to be due to contamination. In conclusion, Borrelia miyamotoi has been found in a tick in the Augsburg region for the first time. This follows on from previous reports of a low incidence of this bacterium in southern Germany around Lake Constance and in the Munich region. This infectious agent should be taken into account when patients present with recurring fever or neurological symptoms which cannot be otherwise explained. Tick-borne relapsing fever should now be considered as a cause of such symptoms and medical professionals should contemplate differential Borrelia testing when presented with corresponding symptoms.


Assuntos
Borrelia/isolamento & purificação , Borrelia/fisiologia , Ixodes/microbiologia , Animais , Alemanha , Reação em Cadeia da Polimerase em Tempo Real
3.
BMC Evol Biol ; 15: 246, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26555390

RESUMO

BACKGROUND: Bacillus cereus sensu lato comprises eight closely related species including the human pathogens Bacillus anthracis and Bacillus cereus. Within B. cereus sensu lato, chromosomally and plasmid-encoded toxins exist. While plasmid-mediated horizontal gene transfer of the emetic toxin, anthrax and insecticidal toxins is known, evolution of enterotoxin genes within the group has not been studied. RESULTS: We report draft genome assemblies of 25 strains, a phylogenetic network of 142 strains based on ANI derived from genome sequences and a phylogeny based on whole-genome SNP analysis. The data clearly support subdivision of B. cereus sensu lato into seven phylogenetic groups. While group I, V and VII represent B. pseudomycoides, B. toyonensis and B. cytotoxicus, which are distinguishable at species level (ANI border ≥ 96 %), strains ascribed to the other five species do not match phylogenic groups. The chromosomal enterotoxin operons nheABC and hblCDAB are abundant within B. cereus both isolated from infections and from the environment. While the duplicated hbl variant hbl a is present in 22 % of all strains investigated, duplication of nheABC is extremely rare (0.02 %) and appears to be phylogenetically unstable. Distribution of toxin genes was matched to a master tree based on seven concatenated housekeeping genes, which depicts species relationships in B. cereus sensu lato as accurately as whole-genome comparisons. Comparison to the phylogeny of enterotoxin genes uncovered ample evidence for horizontal transfer of hbl, cytK and plcR, as well as frequent deletion of both toxins and duplication of hbl. No evidence for nhe deletion was found and stable horizontal transfer of nhe is rare. Therefore, evolution of B. cereus enterotoxin operons is shaped unexpectedly different for yet unknown reasons. CONCLUSIONS: Frequent exchange of the pathogenicity factors hbl, cytK and plcR in B. cereus sensu lato appears to be an important mechanism of B. cereus virulence evolution, including so-called probiotic or non-pathogenic species, which might have consequences for risk assessment procedures. In contrast, exclusively vertical inheritance of nhe was observed, and since nhe-negative strains appear to be extremely rare, we suggest that fitness loss may be associated with deletion or horizontal transfer of the nhe operon.


Assuntos
Bacillus cereus/genética , Bacillus cereus/patogenicidade , Enterotoxinas/genética , Evolução Molecular , Transferência Genética Horizontal , Fatores de Virulência/genética , Infecções por Bacillaceae/microbiologia , Bacillus cereus/classificação , Proteínas de Bactérias/genética , Proteínas Hemolisinas/genética , Óperon , Filogenia
4.
Arch Microbiol ; 196(2): 109-17, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24362949

RESUMO

This study focuses on the impact of actin on adhesion and translocation of Enterococcus (E.) faecalis OG1RF, E. faecalis Symbioflor(®), and E. faecalis V583. Insight into the role of actin aggregation in the mediation of bacterial adhesion and translocation was provided by a two-chamber translocation assay, which employed Ptk6 cells. Determination of translocation rates, cytochalasin D treatment, and laser scanning confocal microscopic observation revealed actin as a predominant brace for enterococci to pass through the epithelial cell layer. As the three enterococci had moderate adhesion ability to actin, actin-binding proteins were isolated and characterized by LC-MS/MS. The isolated proteins were identified as pyruvate formate lyase, enolase, glyceraldehyde-3-phosphate dehydrogenase, and GroEL. All these proteins belong to two major groups of moonlighting proteins, i.e., proteins, which display additional functions other than their described major biochemical catalysis. Both groups of moonlight proteins were determined to be associated with epithelial cell binding.


Assuntos
Actinas/metabolismo , Aderência Bacteriana , Enterococcus faecalis/fisiologia , Animais , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Linhagem Celular , Enterococcus faecalis/metabolismo , Humanos , Camundongos , Proteínas dos Microfilamentos/isolamento & purificação , Proteínas dos Microfilamentos/metabolismo , Espectrometria de Massas em Tandem
5.
Pathog Glob Health ; 113(4): 167-172, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31397213

RESUMO

Ixodes ricinus is the most common tick species parasitizing humans in Europe, and the main vector of Borrelia burgdorferi sensu lato, the causative agent of Lyme disease in the continent. This tick species also harbors the endosymbiont Midichloria mitochondrii, and there is strong evidence that this bacterium is inoculated into the vertebrate host during the blood meal. A high proportion of tick bites remains unnoticed due to rarity of immediate symptoms, implying the risk of occult tick-borne infections in turn a potential risk factor for the onset of chronic-degenerative diseases. Since suitable tools to determine the previous exposure to I. ricinus bites are needed, this work investigated whether seropositivity toward a protein of M. mitochondrii (rFliD) could represent a marker for diagnosis of I. ricinus bite. We screened 274 sera collected from patients from several European countries, at different risk of tick bite, using an ELISA protocol. Our results show a clear trend indicating that positivity to rFliD is higher where the tick bite can be regarded as certain/almost certain, and lower where there is an uncertainty on the bite, with the highest positivity in Lyme patients (47.30%) and the lowest (2.00%) in negative controls. According to the obtained results, M. mitochondrii can be regarded as a useful source of antigens, with the potential to be used to assess the exposure to ticks harboring this bacterium. In prospect, additional antigens from M. mitochondrii and tick salivary glands should be investigated and incorporated in a multi-antigen test for tick bite diagnosis.


Assuntos
Anticorpos Antibacterianos/sangue , Proteínas de Bactérias/imunologia , Ixodes/fisiologia , Rickettsiales/imunologia , Picadas de Carrapatos/diagnóstico , Animais , Ensaio de Imunoadsorção Enzimática , Europa (Continente)/epidemiologia , Comportamento Alimentar , Feminino , Humanos , Ixodes/microbiologia , Masculino , Estudos Soroepidemiológicos , Picadas de Carrapatos/epidemiologia
6.
Front Microbiol ; 8: 627, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28446903

RESUMO

Bacillus cereus is a ubiquitous bacterial pathogen increasingly reported to be the causative agent of foodborne infections and intoxications. Since the enterotoxins linked to the diarrheal form of food poising are foremost produced in the human intestine, the toxic potential of enteropathogenic B. cereus strains is difficult to predict from studies carried out under routine cultivation procedures. In this study, toxigenic properties of a panel of strains (n = 19) of diverse origin were compared using cell culture medium pre-incubated with CaCo-2 cells to mimic intestinal growth conditions. Shortly after contact of the bacteria with the simulated host environment, enterotoxin gene expression was activated and total protein secretion of all strains was accelerated. Although the signal stimulating enterotoxin production still needs to be elucidated, it could be shown that it originated from the CaCo-2 cells. Overall, our study demonstrates that the currently used methods in B. cereus diagnostics, based on standard culture medium, are not allowing a conclusive prediction of the potential health risk related to a certain strain. Thus, these methods should be complemented by cultivation procedures that are simulating intestinal host conditions.

7.
Front Microbiol ; 7: 768, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27252687

RESUMO

Bacillus cereus is a food contaminant with greatly varying enteropathogenic potential. Almost all known strains harbor the genes for at least one of the three enterotoxins Nhe, Hbl, and CytK. While some strains show no cytotoxicity, others have caused outbreaks, in rare cases even with lethal outcome. The reason for these differences in cytotoxicity is unknown. To gain insight into the origin of enterotoxin expression heterogeneity in different strains, the architecture and role of 5' intergenic regions (5' IGRs) upstream of the nhe and hbl operons was investigated. In silico comparison of 142 strains of all seven phylogenetic groups of B. cereus sensu lato proved the presence of long 5' IGRs upstream of the nheABC and hblCDAB operons, which harbor recognition sites for several transcriptional regulators, including the virulence regulator PlcR, redox regulators ResD and Fnr, the nutrient-sensitive regulator CodY as well as the master regulator for biofilm formation SinR. By determining transcription start sites, unusually long 5' untranslated regions (5' UTRs) upstream of the nhe and hbl start codons were identified, which are not present upstream of cytK-1 and cytK-2. Promoter fusions lacking various parts of the nhe and hbl 5' UTR in B. cereus INRA C3 showed that the entire 331 bp 5' UTR of nhe is necessary for full promoter activity, while the presence of the complete 606 bp hbl 5' UTR lowers promoter activity. Repression was caused by a 268 bp sequence directly upstream of the hbl transcription start. Luciferase activity of reporter strains containing nhe and hbl 5' IGR lux fusions provided evidence that toxin gene transcription is upregulated by the depletion of free amino acids. Electrophoretic mobility shift assays showed that the branched-chain amino acid sensing regulator CodY binds to both nhe and hbl 5' UTR downstream of the promoter, potentially acting as a nutrient-responsive roadblock repressor of toxin gene transcription. PlcR binding sites are highly conserved among all B. cereus sensu lato strains, indicating that this regulator does not significantly contribute to the heterogeneity in virulence potentials. The CodY recognition sites are far less conserved, perhaps conferring varying strengths of CodY binding, which might modulate toxin synthesis in a strain-specific manner.

8.
Genome Announc ; 3(4)2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26294623

RESUMO

We report the draft genome sequence of Bacillus cytotoxicus CVUAS 2833, isolated from potato puree in Germany (2007), which is-despite its clearly different source-very similar to the type strain B. cytotoxicus NVH 391-98 isolated in France (average nucleotide identity, 99.5%).

9.
Front Microbiol ; 6: 560, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26113843

RESUMO

In recent years Bacillus cereus has gained increasing importance as a food poisoning pathogen. It is the eponymous member of the B. cereus sensu lato group that consists of eight closely related species showing impressive diversity of their pathogenicity. The high variability of cytotoxicity and the complex regulatory network of enterotoxin expression have complicated efforts to predict the toxic potential of new B. cereus isolates. In this study, comprehensive analyses of enterotoxin gene sequences, transcription, toxin secretion and cytotoxicity were performed. For the first time, these parameters were compared in a whole set of B. cereus strains representing isolates of different origin (food or food poisoning outbreaks) and of different toxic potential (enteropathogenic and apathogenic) to elucidate potential starting points of strain-specific differential toxicity. While toxin gene sequences were highly conserved and did not allow for differentiation between high and low toxicity strains, comparison of nheB and hblD enterotoxin gene transcription and Nhe and Hbl protein titers revealed not only strain-specific differences but also incongruence between toxin gene transcripts and toxin protein levels. With one exception all strains showed comparable capability of protein secretion and so far, no secretion patterns specific for high and low toxicity strains were identified. These results indicate that enterotoxin expression is more complex than expected, possibly involving the orchestrated interplay of different transcriptional regulator proteins, as well as posttranscriptional and posttranslational regulatory mechanisms plus additional influences of environmental conditions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa