Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202407859, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923207

RESUMO

Heterogeneous catalysts with highly active and at the same time stable isolated metal sites constitute a key factor for the advancement of sustainable and cost-effective chemical synthesis. In particular, the development of more practical, and durable iron-based materials is of central interest for organic synthesis, especially for the preparation of chemical products related to life science applications. Here, we report the preparation of Fe-single atom catalysts (Fe-SACs) entrapped in N-doped mesoporous carbon support with unprecedented potential in the preparation of different kinds of amines. The synthetic protocol of Fe-SACs is based on primary pyrolysis of Fe-nitrogen complexes on SiO2 and subsequent removal of silica resulting in the formation of unique mesoporous N-doped carbon support with the pore size controlled by the size of the original silica nanoparticles. The resulting stable and reusable Fe-SACs allow for the reductive amination of a broad range of aldehydes and ketones with ammonia and amines to produce diverse primary, secondary, and tertiary amines including N-methylated products as well as drugs, agrochemicals, and other biomolecules (amino acid esters and amides) utilizing green hydrogen.

2.
Angew Chem Int Ed Engl ; 62(10): e202215699, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36636903

RESUMO

The selective hydrogenation of benzofurans in the presence of a heterogeneous non-noble metal catalyst is reported. The developed optimal catalytic material consists of cobalt-cobalt oxide core-shell nanoparticles supported on silica, which has been prepared by the immobilization and pyrolysis of cobalt-DABCO-citric acid complex on silica under argon at 800 °C. This novel catalyst allows for the selective hydrogenation of simple and functionalized benzofurans to 2,3-dihydrobenzofurans as well as related heterocycles. The versatility of the reported protocol is showcased by the reduction of selected drugs and deuteration of heterocycles. Further, the stability, recycling, and reusability of the Co-nanocatalyst are demonstrated.

3.
Angew Chem Int Ed Engl ; 62(21): e202217380, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36951593

RESUMO

Heterogeneously catalyzed N-formylation of amines to formamide with CO2 /H2 is highly attractive for the valorization of CO2 . However, the relationship of the catalytic performance with the catalyst structure is still elusive. Herein, mixed valence catalysts containing Cu2 O/Cu interface sites were constructed for this transformation. Both aliphatic primary and secondary amines with diverse structures were efficiently converted into the desired formamides with good to excellent yields. Combined ex and in situ catalyst characterization revealed that the presence of Cu2 O/Cu interface sites was vital for the excellent catalytic activity. Density functional theory (DFT) calculations demonstrated that better catalytic activity of Cu2 O/Cu(111) than Cu(111) is attributed to the assistance of oxygen at the Cu2 O/Cu interface (Ointer ) in formation of Ointer -H moieties, which not only reduce the apparent barrier of HCOOH formation but also benefit the desorption of the desired N-formylated amine, leading to high activity and selectivity.

4.
Chemistry ; 27(68): 16889-16895, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34423878

RESUMO

The shift from fossil carbon sources to renewable ones is vital for developing sustainable chemical processes to produce valuable chemicals. In this work, value-added formamides were synthesized in good yields by the reaction of amines with C2 and C3 biomass-based platform molecules such as glycolic acid, 1,3-dihydroxyacetone and glyceraldehyde. These feedstocks were selectively converted by catalysts based on Cu-containing zeolite 5A through the in situ formation of carbonyl-containing intermediates. To the best of our knowledge, this is the first example in which all the carbon atoms in biomass-based feedstocks could be amidated to produce formamide. Combined catalyst characterization results revealed preferably single CuII sites on the surface of Cu/5A, some of which form small clusters, but without direct linking via oxygen bridges. By combining the results of electron paramagnetic resonance (EPR) spin-trapping, operando attenuated total reflection (ATR) IR spectroscopy and control experiments, it was found that the formation of formamides might involve a HCOOH-like intermediate and . NHPh radicals, in which the selective formation of . OOH radicals might play a key role.

5.
Angew Chem Int Ed Engl ; 59(42): 18679-18685, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-32779271

RESUMO

A bifunctional 3d-metal catalyst for the cascade synthesis of diverse pyrroles from nitroarenes is presented. The optimal catalytic system Co/NGr-C@SiO2 -L is obtained by pyrolysis of a cobalt-impregnated composite followed by subsequent selective leaching. In the presence of this material, (transfer) hydrogenation of easily available nitroarenes and subsequent Paal-Knorr/Clauson-Kass condensation provides >40 pyrroles in good to high yields using dihydrogen, formic acid, or a CO/H2 O mixture (WGSR conditions) as reductant. In addition to the favorable step economy, this straightforward domino process does not require any solvents or external co-catalysts. The general synthetic utility of this methodology was demonstrated on a variety of functionalized substrates including the preparation of biologically active and pharmaceutically relevant compounds, for example, (+)-Isamoltane.

6.
Angew Chem Int Ed Engl ; 59(40): 17408-17412, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32543735

RESUMO

Herein, we report the synthesis of specific silica-supported Co/Co3 O4 core-shell based nanoparticles prepared by template synthesis of cobalt-pyromellitic acid on silica and subsequent pyrolysis. The optimal catalyst material allows for general and selective hydrogenation of pyridines, quinolines, and other heteroarenes including acridine, phenanthroline, naphthyridine, quinoxaline, imidazo[1,2-a]pyridine, and indole under comparably mild reaction conditions. In addition, recycling of these Co nanoparticles and their ability for dehydrogenation catalysis are showcased.

7.
Chemistry ; 25(21): 5534-5538, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30779224

RESUMO

Hydroformylation of olefins has been studied in the presence of specific heterogeneous cobalt nanoparticles. The catalytic materials were prepared by pyrolysis of preformed cobalt complexes deposited onto different inorganic supports. Atomic absorption spectroscopy (AAS) measurements indicated a correlation of catalyst activity and cobalt leaching as well as a strong influence of the heterogeneous support on the productivity. These new, low-cost, easy-to-handle catalysts can substitute more toxic, unstable and volatile cobalt carbonyl complexes for hydroformylations on a laboratory scale.

8.
Angew Chem Int Ed Engl ; 58(16): 5251-5255, 2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30715789

RESUMO

Glycolic acid (GA), as important building block of biodegradable polymers, has been synthesized for the first time in excellent yields at room temperature by selective oxidation of 1,3-dihyroxyacetone (DHA) using a cheap supported Cu/Al2 O3 catalyst with single active CuII species. By combining EPR spin-trapping and operando ATR-IR experiments, different mechanisms for the co-synthesis of GA, formates, and formamides have been derived, in which . OH radicals formed from H2 O2 by a Fenton-like reaction play a key role.

9.
Angew Chem Int Ed Engl ; 57(44): 14488-14492, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-29923280

RESUMO

Novel heterogeneous catalysts were prepared by impregnation of titania with a solution of cobalt acetate/melamine and subsequent pyrolysis. The resulting materials show an unusual nitrogen-modified titanium structure through partial implementation of nitrogen into the support. The optimal catalyst displayed good activity and selectivity for challenging pyridine hydrogenation under acid free conditions in water as solvent.

10.
J Am Chem Soc ; 138(28): 8781-8, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27320777

RESUMO

Novel heterogeneous cobalt-based catalysts have been prepared by pyrolysis of cobalt complexes with nitrogen ligands on different inorganic supports. The activity and selectivity of the resulting materials in the hydrogenation of nitriles and carbonyl compounds is strongly influenced by the modification of the support and the nitrogen-containing ligand. The optimal catalyst system ([Co(OAc)2/Phen@α-Al2O3]-800 = Cat. E) allows for efficient reduction of both aromatic and aliphatic nitriles including industrially relevant dinitriles to primary amines under mild conditions. The generality and practicability of this system is further demonstrated in the hydrogenation of diverse aliphatic, aromatic, and heterocyclic ketones as well as aldehydes, which are readily reduced to the corresponding alcohols.

11.
Nat Chem ; 14(3): 334-341, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35027706

RESUMO

Isotope labelling, particularly deuteration, is an important tool for the development of new drugs, specifically for identification and quantification of metabolites. For this purpose, many efficient methodologies have been developed that allow for the small-scale synthesis of selectively deuterated compounds. Due to the development of deuterated compounds as active drug ingredients, there is a growing interest in scalable methods for deuteration. The development of methodologies for large-scale deuterium labelling in industrial settings requires technologies that are reliable, robust and scalable. Here we show that a nanostructured iron catalyst, prepared by combining cellulose with abundant iron salts, permits the selective deuteration of (hetero)arenes including anilines, phenols, indoles and other heterocycles, using inexpensive D2O under hydrogen pressure. This methodology represents an easily scalable deuteration (demonstrated by the synthesis of deuterium-containing products on the kilogram scale) and the air- and water-stable catalyst enables efficient labelling in a straightforward manner with high quality control.


Assuntos
Hidrogênio , Catálise , Deutério
12.
ChemistryOpen ; 10(12): 1244-1250, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34904386

RESUMO

Rice husk, one of the main side products in the rice production, and its sustainable management represent a challenge in many countries. Herein, we describe the use of this abundant agricultural bio-waste as feedstock for the preparation of silver-containing carbon/silica nano composites with antimicrobial properties. The synthesis was performed using a fast and cheap methodology consisting of wet impregnation followed by pyrolysis, yielding C/SiO2 composite materials doped with varying amounts of silver from 28 to 0.001 wt %. The materials were fully characterized and their antimicrobial activity against ESKAPE pathogens, namely E. faecium, S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, and E. coli, and the pathogenic yeast C. albicans was investigated. Sensitivities of these strains against the prepared materials were demonstrated, even with exceptional low amounts of 0.015 m% silver. Hence, we report a straightforward method for the synthesis of antimicrobial agents from abundant sources which addresses urgent questions like bio-waste valorization and affordable alternatives to increasingly fewer effective antibiotics.


Assuntos
Anti-Infecciosos , Oryza , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Carbono , Escherichia coli , Dióxido de Silício , Prata/farmacologia , Staphylococcus aureus
13.
Chem Sci ; 11(24): 6217-6221, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32953016

RESUMO

The first examples of heterogeneous Fe-catalysed cyclopropanation reactions are presented. Pyrolysis of in situ-generated iron/phenanthroline complexes in the presence of a carbonaceous material leads to specific supported nanosized iron particles, which are effective catalysts for carbene transfer reactions. Using olefins as substrates, cyclopropanes are obtained in high yields and moderate diastereoselectivities. The developed protocol is scalable and the activity of the recycled catalyst after deactivation can be effectively restored using an oxidative reactivation protocol under mild conditions.

14.
Chem Commun (Camb) ; 55(34): 4969-4972, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30968097

RESUMO

Nickel-based nanocatalysts were used in acceptorless, reversible dehydrogenation and hydrogenation reactions of N-heterocycles. Both processes were realized in the same solvent using a single catalyst, without isolation of products and workup, which makes it attractive for hydrogen storage purposes. This concept has been demonstrated in a continuous hydrogenation/dehydrogenation sequence of quinaldine with negligible loss in activity of the nickel catalyst after three hydrogen storage cycles. The scope of acceptorless dehydrogenation has been explored and control experiments suggest that hydrogen liberation is initiated via amine dehydrogenation and supports the direct alkane dehydrogenation from the partially oxidized N-heterocycles.

15.
ChemSusChem ; 12(3): 651-660, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30451389

RESUMO

Au/TiO2 and Au/SiO2 catalysts containing 2 wt % Au and different amounts of K or Cs were tested for alcohol synthesis from CO2 , H2 , and C2 H4 /C3 H6 . 1-Propanol or 1-butanol/isobutanol were obtained in the presence of C2 H4 or C3 H6 . Higher yields of the corresponding alcohols were obtained over TiO2 -based catalysts in comparison with their SiO2 -based counterparts. This is caused by an enhanced ability of the TiO2 -based catalysts for CO2 activation, as concluded from in situ fourier-transform infrared (FTIR) spectroscopy and temporal analysis of products (TAP) studies. The synthesized carbonate and formate species adsorbed on the support do not hamper CO2 conversion into CO and the hydroformylation reaction. The transformation of Auδ+ to active Au0 sites proceeds during an activation procedure. As reflected by CO adsorption and scanning transmission electron microscopy, the accessible Au0 sites are influenced by the amount of alkali dopants and the support. FTIR data and TAP tests reveal a very weak interaction of C2 H4 with the catalyst, suggesting its quick reaction with CO and H2 after activation on Au0 sites to form propanol and propane.

16.
Sci Adv ; 4(9): eaau1248, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30255152

RESUMO

Hydrogenation of olefins is achieved using biowaste-derived cobalt chitosan catalysts. Characterization of the optimal Co@Chitosan-700 by STEM (scanning transmission electron microscopy), EELS (electron energy loss spectroscopy), PXRD (powder x-ray diffraction), and elemental analysis revealed the formation of a distinctive magnetic composite material with high metallic Co content. The general performance of this catalyst is demonstrated in the hydrogenation of 50 olefins including terminal, internal, and functionalized derivatives, as well as renewables. Using this nonnoble metal composite, hydrogenation of terminal C==C double bonds occurs under very mild and benign conditions (water or methanol, 40° to 60°C). The utility of Co@Chitosan-700 is showcased for efficient hydrogenation of the industrially relevant examples diisobutene, fatty acids, and their triglycerides. Because of the magnetic behavior of this material and water as solvent, product separation and recycling of the catalyst are straightforward.

17.
Chem Sci ; 9(42): 8134-8141, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30542564

RESUMO

By applying N-doped carbon modified iron-based catalysts, the controlled hydrogenation of N-heteroarenes, especially (iso)quinolones, is achieved. Crucial for activity is the catalyst preparation by pyrolysis of a carbon-impregnated composite, obtained from iron(ii) acetate and N-aryliminopyridines. As demonstrated by TEM, XRD, XPS and Raman spectroscopy, the synthesized material is composed of Fe(0), Fe3C and FeN x in a N-doped carbon matrix. The decent catalytic activity of this robust and easily recyclable Fe-material allowed for the selective hydrogenation of various (iso)quinoline derivatives, even in the presence of reducible functional groups, such as nitriles, halogens, esters and amides. For a proof-of-concept, this nanostructured catalyst was implemented in the multistep synthesis of natural products and pharmaceutical lead compounds as well as modification of photoluminescent materials. As such this methodology constitutes the first heterogeneous iron-catalyzed hydrogenation of substituted (iso)quinolones with synthetic importance.

19.
Chem Sci ; 8(9): 6239-6246, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28989657

RESUMO

Nitrogen modified cobalt catalysts supported on carbon were prepared by pyrolysis of the mixture generated from cobalt(ii) acetate in aqueous solution of melamine or waste melamine resins, which are widely used as industrial polymers. The obtained nanostructured materials catalyze the transfer hydrogenation of N-heteroarenes with formic acid in the absence of base. The optimal Co/Melamine-2@C-700 catalyst exhibits high activity and selectivity for the dehydrogenation of formic acid into molecular hydrogen and carbon dioxide and allows for the reduction of diverse N-heteroarenes including substrates featuring sensitive functional groups.

20.
ACS Cent Sci ; 3(6): 580-585, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28691069

RESUMO

Catalytic hydrosilylation represents a straightforward and atom-efficient methodology for the creation of C-Si bonds. In general, the application of homogeneous platinum complexes prevails in industry and academia. Herein, we describe the first heterogeneous single atom catalysts (SACs), which are conveniently prepared by decorating alumina nanorods with platinum atoms. The resulting stable material efficiently catalyzes hydrosilylation of industrially relevant olefins with high TON (≈105). A variety of substrates is selectively hydrosilylated including compounds with sensitive reducible and other functional groups (N, B, F, Cl). The single atom based catalyst shows significantly higher activity compared to related Pt nanoparticles.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa