Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 118(10): 107002, 2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28339236

RESUMO

We study the effect of applied strain as a physical control parameter for the phase transitions of Ca(Fe_{1-x}Co_{x})_{2}As_{2} using resistivity, magnetization, x-ray diffraction, and ^{57}Fe Mössbauer spectroscopy. Biaxial strain, namely, compression of the basal plane of the tetragonal unit cell, is created through firm bonding of samples to a rigid substrate via differential thermal expansion. This strain is shown to induce a magnetostructural phase transition in originally paramagnetic samples, and superconductivity in previously nonsuperconducting ones. The magnetostructural transition is gradual as a consequence of using strain instead of pressure or stress as a tuning parameter.

2.
Phys Rev Lett ; 119(14): 147201, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-29053286

RESUMO

Inelastic neutron scattering measurements on the itinerant antiferromagnet CaCo_{2-y}As_{2} at a temperature of 8 K reveal two orthogonal planes of scattering perpendicular to the Co square lattice in reciprocal space, demonstrating the presence of effective one-dimensional spin interactions. These results are shown to arise from near-perfect bond frustration within the J_{1}-J_{2} Heisenberg model on a square lattice with ferromagnetic J_{1} and hence indicate that the extensive previous experimental and theoretical study of the J_{1}-J_{2} Heisenberg model on local-moment square spin lattices should be expanded to include itinerant spin systems.

3.
Phys Rev Lett ; 116(19): 196401, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27232028

RESUMO

We use angle resolved photoemission spectroscopy, Raman spectroscopy, low energy electron diffraction, and x-ray scattering to reveal an unusual electronically mediated charge density wave (CDW) in K_{0.9}Mo_{6}O_{17}. Not only does K_{0.9}Mo_{6}O_{17} lack signatures of electron-phonon coupling, but it also hosts an extraordinary surface CDW, with T_{S_CDW}=220 K nearly twice that of the bulk CDW, T_{B_CDW}=115 K. While the bulk CDW has a BCS-like gap of 12 meV, the surface gap is 10 times larger and well in the strong coupling regime. Strong coupling behavior combined with the absence of signatures of strong electron-phonon coupling indicates that the CDW is likely mediated by electronic interactions enhanced by low dimensionality.

4.
Phys Rev Lett ; 117(12): 127001, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27689292

RESUMO

The in-plane resistivity anisotropy is studied in strain-detwinned single crystals of FeSe. In contrast to other iron-based superconductors, FeSe does not develop long-range magnetic order below the tetragonal-to-orthorhombic transition at T_{s}≈90 K. This allows for the disentanglement of the contributions to the resistivity anisotropy due to nematic and magnetic orders. Comparing direct transport and elastoresistivity measurements, we extract the intrinsic resistivity anisotropy of strain-free samples. The anisotropy peaks slightly below T_{s} and decreases to nearly zero on cooling down to the superconducting transition. This behavior is consistent with a scenario in which the in-plane resistivity anisotropy is dominated by inelastic scattering by anisotropic spin fluctuations.

5.
Phys Rev Lett ; 114(21): 217001, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26066451

RESUMO

X-ray magnetic circular dichroism (XMCD) measurements on single-crystal and powder samples of Ba_{0.6}K_{0.4}Mn_{2}As_{2} show that the ferromagnetism below T_{C}≈100 K arises in the As 4p conduction band. No XMCD signal is observed at the Mn x-ray absorption edges. Below T_{C}, however, a clear XMCD signal is found at the As K edge which increases with decreasing temperature. The XMCD signal is absent in data taken with the beam directed parallel to the crystallographic c axis indicating that the orbital magnetic moment lies in the basal plane of the tetragonal lattice. These results show that the previously reported itinerant ferromagnetism is associated with the As 4p conduction band and that distinct local-moment antiferromagnetism and itinerant ferromagnetism with perpendicular easy axes coexist in this compound at low temperature.

6.
Phys Rev Lett ; 114(15): 157002, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25933332

RESUMO

We use nuclear magnetic resonance (NMR), high-resolution x-ray, and neutron scattering studies to study structural and magnetic phase transitions in phosphorus-doped BaFe2(As(1-x)P(x)2. Previous transport, NMR, specific heat, and magnetic penetration depth measurements have provided compelling evidence for the presence of a quantum critical point (QCP) near optimal superconductivity at x=0.3. However, we show that the tetragonal-to-orthorhombic structural (T{s}) and paramagnetic to antiferromagnetic (AF, TN) transitions in BaFe2(As(1-x)Px)2 are always coupled and approach T{N}≈T{s}≥T{c} (≈29 K) for x=0.29 before vanishing abruptly for x≥0.3. These results suggest that AF order in BaFe_{2}(As(1-x)Px)2 disappears in a weakly first-order fashion near optimal superconductivity, much like the electron-doped iron pnictides with an avoided QCP.

7.
Phys Rev Lett ; 111(22): 227002, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24329466

RESUMO

The relationship between antiferromagnetic spin fluctuations and superconductivity has become a central topic of research in studies of superconductivity in the iron pnictides. We present unambiguous evidence of the absence of magnetic fluctuations in the nonsuperconducting collapsed tetragonal phase of CaFe2As2 via inelastic neutron scattering time-of-flight data, which is consistent with the view that spin fluctuations are a necessary ingredient for unconventional superconductivity in the iron pnictides. We demonstrate that the collapsed tetragonal phase of CaFe2As2 is nonmagnetic, and discuss this result in light of recent reports of high-temperature superconductivity in the collapsed tetragonal phase of closely related compounds.

8.
Phys Rev Lett ; 111(15): 157001, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24160618

RESUMO

Inelastic neutron scattering measurements of paramagnetic SrCo2As2 at T=5 K reveal antiferromagnetic (AFM) spin fluctuations that are peaked at a wave vector of Q(AFM)=(1/2,1/2,1) and possess a large energy scale. These stripe spin fluctuations are similar to those found in AFe2As2 compounds, where spin-density wave AFM is driven by Fermi surface nesting between electron and hole pockets separated by Q(AFM). SrCo2As2 has a more complex Fermi surface and band-structure calculations indicate a potential instability toward either a ferromagnetic or stripe AFM ground state. The results suggest that stripe AFM magnetism is a general feature of both iron and cobalt-based arsenides and the search for spin fluctuation-induced unconventional superconductivity should be expanded to include cobalt-based compounds.

9.
Phys Rev Lett ; 111(4): 047001, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23931395

RESUMO

Magnetization, nuclear magnetic resonance, high-resolution x-ray diffraction, and magnetic field-dependent neutron diffraction measurements reveal a novel magnetic ground state of Ba0.60K0.40Mn2As2 in which itinerant ferromagnetism (FM) below a Curie temperature TC≈100 K arising from the doped conduction holes coexists with collinear antiferromagnetism (AFM) of the Mn local moments that order below a Néel temperature TN=480 K. The FM ordered moments are aligned in the tetragonal ab plane and are orthogonal to the AFM ordered Mn moments that are aligned along the c axis. The magnitude and nature of the low-T FM ordered moment correspond to complete polarization of the doped-hole spins (half-metallic itinerant FM) as deduced from magnetization and ab-plane electrical resistivity measurements.

10.
Phys Rev Lett ; 110(17): 177002, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679760

RESUMO

Inelastic neutron scattering measurements on Ba(Fe0.963Ni0.037)2As2 manifest a neutron spin resonance in the superconducting state with anisotropic dispersion within the Fe layer. Whereas the resonance is sharply peaked at the antiferromagnetic (AFM) wave vector Q(AFM) along the orthorhombic a axis, the resonance disperses upwards away from Q(AFM) along the b axis. In contrast to the downward dispersing resonance and hourglass shape of the spin excitations in superconducting cuprates, the resonance in electron-doped BaFe2As2 compounds possesses a magnonlike upwards dispersion.

11.
J Phys Condens Matter ; 35(39)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37343571

RESUMO

The magnetic order for several compositions of CaK(Fe1-xMnx)4As4has been studied by nuclear magnetic resonance (NMR), Mössbauer spectroscopy, and neutron diffraction. Our observations for the Mn-doped 1144 compound are consistent with the hedgehog spin vortex crystal (hSVC) order which has previously been found for Ni-dopedCaKFe4As4. The hSVC state is characterized by the stripe-type propagation vectors(π0)and(0π)just as in the doped 122 compounds. The hSVC state preserves tetragonal symmetry at the Fe site, and only this SVC motif with simple antiferromagnetic (AFM) stacking alongcis consistent with all our observations using NMR Mössbauer spectroscopy, and neutron diffraction. We find that the hSVC state in the Mn-doped 1144 compound coexists with superconductivity, and by combining the neutron scattering and Mössbauer spectroscopy data we can infer a quantum phase transition, hidden under the superconducting dome, associated with the suppression of the AFM transition temperature (TN) to zero forx ≈ 0.01. In addition, unlike several 122 compounds and Ni-doped 1144, the ordered magnetic moment is not observed to decrease at temperatures below the superconducting transition temperature (Tc).

12.
Phys Rev Lett ; 108(8): 087005, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22463561

RESUMO

The compound BaMn2As2 with the tetragonal ThCr2Si2 structure is a local-moment antiferromagnetic insulator with a Néel temperature T(N)=625 K and a large ordered moment µ=3.9µ(B)/Mn. We demonstrate that this compound can be driven metallic by partial substitution of Ba by K while retaining the same crystal and antiferromagnetic structures together with nearly the same high T(N) and large µ. Ba(1-x)K(x)Mn2As2 is thus the first metallic ThCr2Si2-type MAs-based system containing local 3d transition metal M magnetic moments, with consequences for the ongoing debate about the local-moment versus itinerant pictures of the FeAs-based superconductors and parent compounds. The Ba(1-x)K(x)Mn2As2 class of compounds also forms a bridge between the layered iron pnictides and cuprates and may be useful to test theories of high T(c) superconductivity.

13.
Phys Rev Lett ; 109(5): 057001, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-23006199

RESUMO

We report an inelastic neutron scattering investigation of phonons with energies up to 159 meV in the conventional superconductor YNi(2)B(2)C. Using the sweep mode, a newly developed time-of-flight technique involving the continuous rotation of a single crystal specimen, allowed us to measure a four-dimensional volume in (Q, E) space and, thus, determine the dispersion surface and linewidths of the A(1g) (≈102 meV) and A(u) (≈159 meV) type phonon modes over the whole Brillouin zone. Despite of having linewidths of Γ=10 meV, A(1g) modes do not strongly contribute to the total electron-phonon coupling constant λ. However, experimental linewidths show a remarkable agreement with ab initio calculations over the complete phonon energy range, demonstrating the accuracy of such calculations in a rare comparison to a comprehensive experimental data set.

14.
Phys Rev Lett ; 109(16): 167003, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23215117

RESUMO

The spin fluctuation spectra from nonsuperconducting Cu-substituted, and superconducting Co-substituted, BaFe(2)As(2) are compared quantitatively by inelastic neutron scattering measurements and are found to be indistinguishable. Whereas diffraction studies show the appearance of incommensurate spin-density wave order in Co and Ni substituted samples, the magnetic phase diagram for Cu substitution does not display incommensurate order, demonstrating that simple electron counting based on rigid-band concepts is invalid. These results, supported by theoretical calculations, suggest that substitutional impurity effects in the Fe plane play a significant role in controlling magnetism and the appearance of superconductivity, with Cu distinguished by enhanced impurity scattering and split-band behavior.

15.
Phys Rev Lett ; 106(25): 257001, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21770663

RESUMO

Neutron diffraction studies of Ba(Fe(1-x)Co(x))(2)As)(2) reveal that commensurate antiferromagnetic order gives way to incommensurate magnetic order for Co compositions between 0.056 < x < 0.06. The incommensurability has the form of a small transverse splitting (0, ± ε, 0) from the commensurate antiferromagnetic propagation vector Q(AFM) = (1,0,1) (in orthorhombic notation) where ε ≈ 0.02-0.03 and is composition dependent. The results are consistent with the formation of a spin-density wave driven by Fermi surface nesting of electron and hole pockets and confirm the itinerant nature of magnetism in the iron arsenide superconductors.

16.
Phys Rev B ; 103(17)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-37588030

RESUMO

We report the magnetic ordering and structural distortion in PrFeAsO crystals, the basis compound for one of the oxypnictide superconductors, using high-resolution x-ray diffraction, neutron diffraction, and x-ray resonant magnetic scattering (XRMS). We find the structural tetragonal-to-orthorhombic phase transition at TS=147K, the AFM phase transition of the Fe moments at TFe=72K, and the Pr AFM phase transition at TPr=21K. Combined high-resolution neutron diffraction and XRMS show unambiguously that the Pr moments point parallel to the longer orthorhombic a axis and order antiferromagnetically along the a axis but ferromagnetically along the b and c directions in the stripelike AFM order. The temperature-dependent magnetic order parameter of the Pr moments shows no evidence for a reorientation of moments.

17.
Nat Commun ; 12(1): 999, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579928

RESUMO

Knowledge of magnetic symmetry is vital for exploiting nontrivial surface states of magnetic topological materials. EuIn2As2 is an excellent example, as it is predicted to have collinear antiferromagnetic order where the magnetic moment direction determines either a topological-crystalline-insulator phase supporting axion electrodynamics or a higher-order-topological-insulator phase with chiral hinge states. Here, we use neutron diffraction, symmetry analysis, and density functional theory results to demonstrate that EuIn2As2 actually exhibits low-symmetry helical antiferromagnetic order which makes it a stoichiometric magnetic topological-crystalline axion insulator protected by the combination of a 180∘ rotation and time-reversal symmetries: [Formula: see text]. Surfaces protected by [Formula: see text] are expected to have an exotic gapless Dirac cone which is unpinned to specific crystal momenta. All other surfaces have gapped Dirac cones and exhibit half-integer quantum anomalous Hall conductivity. We predict that the direction of a modest applied magnetic field of µ0H ≈ 1 to 2 T can tune between gapless and gapped surface states.

18.
Phys Rev Lett ; 104(5): 057006, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20366790

RESUMO

High-resolution x-ray diffraction measurements reveal an unusually strong response of the lattice to superconductivity in Ba(Fe1-xCox)2As2. The orthorhombic distortion of the lattice is suppressed and, for Co doping near x=0.063, the orthorhombic structure evolves smoothly back to a tetragonal structure. We propose that the coupling between orthorhombicity and superconductivity is indirect and arises due to the magnetoelastic coupling, in the form of emergent nematic order, and the strong competition between magnetism and superconductivity.

19.
Phys Rev B ; 99(18)2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-38846064

RESUMO

We present neutron-diffraction data for the cubic-heavy-fermion YbBiPt that show broad magnetic diffraction peaks due to the fragile short-range antiferromagnetic (AFM) order persist under an applied magnetic-field H . Our results for H ⊥ [ 1 ¯ 1 0 ] and a temperature of T = 0.14 1 K show that 1 2 , 1 2 , 3 2 ) magnetic diffraction peak can be described by the same two-peak line shape found for µ 0 H = 0 T below the Néel temperature of T N = 0.4 K . Both components of the peak exist for µ 0 H ≲ 1.4 T , which is well past the AFM phase boundary determined from our new resistivity data. Using neutron-diffraction data taken at T = 0.13 ( 2 ) K for H ∥ 0 0 1 taken at or 1 1 0 , we show that domains of short-range AFM order change size throughout the previously determined AFM and non-Fermi liquid regions of the phase diagram, and that the appearance of a magnetic diffraction peak at 1 2 , 1 2 , 1 2 at µ 0 H ≈ 0.4 T signals canting of the ordered magnetic moment away from 1 1 1 . The continued broadness of the magnetic diffraction peaks under a magnetic field and their persistence across the AFM phase boundary established by detailed transport and thermodynamic experiments present an interesting quandary concerning the nature of YbBiPt's electronic ground state.

20.
Nat Commun ; 9(1): 2796, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30022110

RESUMO

The interplay between superconductivity and charge-density wave (CDW) in 2H-NbSe2 is not fully understood despite decades of study. Artificially introduced disorder can tip the delicate balance between two competing long-range orders, and reveal the underlying interactions that give rise to them. Here we introduce disorder by electron irradiation and measure in-plane resistivity, Hall resistivity, X-ray scattering, and London penetration depth. With increasing disorder, the superconducting transition temperature, Tc, varies non-monotonically, whereas the CDW transition temperature, TCDW, monotonically decreases and becomes unresolvable above a critical irradiation dose where Tc drops sharply. Our results imply that the CDW order initially competes with superconductivity, but eventually assists it. We argue that at the transition where the long-range CDW order disappears, the cooperation with superconductivity is dramatically suppressed. X-ray scattering and Hall resistivity measurements reveal that the short-range CDW survives above the transition. Superconductivity persists to much higher dose levels, consistent with fully gapped superconductivity and moderate interband pairing.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa