Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Assunto principal
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 489(7414): 124-7, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-22955623

RESUMO

Over a two-year period, Voyager 1 observed a gradual slowing-down of radial plasma flow in the heliosheath to near-zero velocity after April 2010 at a distance of 113.5 astronomical units from the Sun (1 astronomical unit equals 1.5 × 10(8) kilometres). Voyager 1 was then about 20 astronomical units beyond the shock that terminates the free expansion of the solar wind and was immersed in the heated non-thermal plasma region called the heliosheath. The expectation from contemporary simulations was that the heliosheath plasma would be deflected from radial flow to meridional flow (in solar heliospheric coordinates), which at Voyager 1 would lie mainly on the (locally spherical) surface called the heliopause. This surface is supposed to separate the heliosheath plasma, which is of solar origin, from the interstellar plasma, which is of local Galactic origin. In 2011, the Voyager project began occasional temporary re-orientations of the spacecraft (totalling about 10-25 hours every 2 months) to re-align the Low-Energy Charged Particle instrument on board Voyager 1 so that it could measure meridional flow. Here we report that, contrary to expectations, these observations yielded a meridional flow velocity of +3 ± 11 km s(-1), that is, one consistent with zero within statistical uncertainties.

2.
Nature ; 474(7351): 359-61, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21677754

RESUMO

Voyager 1 has been in the reservoir of energetic ions and electrons that constitutes the heliosheath since it crossed the solar wind termination shock on 16 December 2004 at a distance from the Sun of 94 astronomical units (1 AU = 1.5 × 10(8) km). It is now ∼22 AU past the termination shock crossing. The bulk velocity of the plasma in the radial-transverse plane has been determined using measurements of the anisotropy of the convected energetic ion distribution. Here we report that the radial component of the velocity has been decreasing almost linearly over the past three years, from ∼70 km s(-1) to ∼0 km s(-1), where it has remained for the past eight months. It now seems that Voyager 1 has entered a finite transition layer of zero-radial-velocity plasma flow, indicating that the spacecraft may be close to the heliopause, the border between the heliosheath and the interstellar plasma. The existence of a flow transition layer in the heliosheath contradicts current predictions--generally assumed by conceptual models--of a sharp discontinuity at the heliopause.

3.
Nature ; 472(7343): 331-3, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21512570

RESUMO

Although there are substantial differences between the magnetospheres of Jupiter and Saturn, it has been suggested that cryovolcanic activity at Enceladus could lead to electrodynamic coupling between Enceladus and Saturn like that which links Jupiter with Io, Europa and Ganymede. Powerful field-aligned electron beams associated with the Io-Jupiter coupling, for example, create an auroral footprint in Jupiter's ionosphere. Auroral ultraviolet emission associated with Enceladus-Saturn coupling is anticipated to be just a few tenths of a kilorayleigh (ref. 12), about an order of magnitude dimmer than Io's footprint and below the observable threshold, consistent with its non-detection. Here we report the detection of magnetic-field-aligned ion and electron beams (offset several moon radii downstream from Enceladus) with sufficient power to stimulate detectable aurora, and the subsequent discovery of Enceladus-associated aurora in a few per cent of the scans of the moon's footprint. The footprint varies in emission magnitude more than can plausibly be explained by changes in magnetospheric parameters--and as such is probably indicative of variable plume activity.

5.
J Geophys Res Space Phys ; 121(3): 2171-2184, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-27830111

RESUMO

The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X-Ray Spectrometer and Gamma-Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near-tail region of Mercury's magnetosphere and are subsequently "injected" onto closed magnetic field lines on the planetary nightside. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and prenoon sectors, at times executing multiple complete drifts around the planet to form "quasi-trapped" populations.

6.
Science ; 333(6051): 1862-5, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21960628

RESUMO

Global measurements by MESSENGER of the fluxes of heavy ions at Mercury, particularly sodium (Na(+)) and oxygen (O(+)), exhibit distinct maxima in the northern magnetic-cusp region, indicating that polar regions are important sources of Mercury's ionized exosphere, presumably through solar-wind sputtering near the poles. The observed fluxes of helium (He(+)) are more evenly distributed, indicating a more uniform source such as that expected from evaporation from a helium-saturated surface. In some regions near Mercury, especially the nightside equatorial region, the Na(+) pressure can be a substantial fraction of the proton pressure.

7.
Science ; 333(6051): 1865-8, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21960629

RESUMO

The MESSENGER spacecraft began detecting energetic electrons with energies greater than 30 kilo-electron volts (keV) shortly after its insertion into orbit about Mercury. In contrast, no energetic protons were observed. The energetic electrons arrive as bursts lasting from seconds to hours and are most intense close to the planet, distributed in latitude from the equator to the north pole, and present at most local times. Energies can exceed 200 keV but often exhibit cutoffs near 100 keV. Angular distributions of the electrons about the magnetic field suggest that they do not execute complete drift paths around the planet. This set of characteristics demonstrates that Mercury's weak magnetic field does not support Van Allen-type radiation belts, unlike all other planets in the solar system with internal magnetic fields.

8.
Science ; 329(5992): 665-8, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20647422

RESUMO

During MESSENGER's third flyby of Mercury, the magnetic field in the planet's magnetic tail increased by factors of 2 to 3.5 over intervals of 2 to 3 minutes. Magnetospheric substorms at Earth are powered by similar tail loading, but the amplitude is lower by a factor of approximately 10 and typical durations are approximately 1 hour. The extreme tail loading observed at Mercury implies that the relative intensity of substorms must be much larger than at Earth. The correspondence between the duration of tail field enhancements and the characteristic time for the Dungey cycle, which describes plasma circulation through Mercury's magnetosphere, suggests that such circulation determines the substorm time scale. A key aspect of tail unloading during terrestrial substorms is the acceleration of energetic charged particles, but no acceleration signatures were seen during the MESSENGER flyby.

9.
Philos Trans A Math Phys Eng Sci ; 367(1889): 743-52, 2009 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-19073465

RESUMO

Titan's nitrogen-rich atmosphere is directly bombarded by energetic ions, due to its lack of a significant intrinsic magnetic field. Singly charged energetic ions from Saturn's magnetosphere undergo charge-exchange collisions with neutral atoms in Titan's upper atmosphere, or exosphere, being transformed into energetic neutral atoms (ENAs). The ion and neutral camera, one of the three sensors that comprise the magnetosphere imaging instrument (MIMI) on the Cassini/Huygens mission to Saturn and Titan, images these ENAs like photons, and measures their fluxes and energies. These remote-sensing measurements, combined with the in situ measurements performed in the upper thermosphere and in the exosphere by the ion and neutral mass spectrometer instrument, provide a powerful diagnostic of Titan's exosphere and its interaction with the Kronian magnetosphere. These observations are analysed and some of the exospheric features they reveal are modelled.

10.
Science ; 324(5927): 606-10, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19407194

RESUMO

Solar wind energy transfer to planetary magnetospheres and ionospheres is controlled by magnetic reconnection, a process that determines the degree of connectivity between the interplanetary magnetic field (IMF) and a planet's magnetic field. During MESSENGER's second flyby of Mercury, a steady southward IMF was observed and the magnetopause was threaded by a strong magnetic field, indicating a reconnection rate ~10 times that typical at Earth. Moreover, a large flux transfer event was observed in the magnetosheath, and a plasmoid and multiple traveling compression regions were observed in Mercury's magnetotail, all products of reconnection. These observations indicate that Mercury's magnetosphere is much more responsive to IMF direction and dominated by the effects of reconnection than that of Earth or the other magnetized planets.

11.
Science ; 321(5885): 90-2, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18599777

RESUMO

The region around Mercury is filled with ions that originate from interactions of the solar wind with Mercury's space environment and through ionization of its exosphere. The MESSENGER spacecraft's observations of Mercury's ionized exosphere during its first flyby yielded Na+, O+, and K+ abundances, consistent with expectations from observations of neutral species. There are increases in ions at a mass per charge (m/q) = 32 to 35, which we interpret to be S+ and H2S+, with (S+ + H2S+)/(Na+ + Mg+) = 0.67 +/- 0.06, and from water-group ions around m/q = 18, at an abundance of 0.20 +/- 0.03 relative to Na+ plus Mg+. The fluxes of Na+, O+, and heavier ions are largest near the planet, but these Mercury-derived ions fill the magnetosphere. Doubly ionized ions originating from Mercury imply that electrons with energies less than 1 kiloelectron volt are substantially energized in Mercury's magnetosphere.

12.
Science ; 321(5885): 59-62, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18599768

RESUMO

In January 2008, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft became the first probe to fly past the planet Mercury in 33 years. The encounter revealed that Mercury is a dynamic system; its liquid iron-rich outer core is coupled through a dominantly dipolar magnetic field to the surface, exosphere, and magnetosphere, all of which interact with the solar wind. MESSENGER images confirm that lobate scarps are the dominant tectonic landform and record global contraction associated with cooling of the planet. The history of contraction can be related to the history of volcanism and cratering, and the total contractional strain is at least one-third greater than inferred from Mariner 10 images. On the basis of measurements of thermal neutrons made during the flyby, the average abundance of iron in Mercury's surface material is less than 6% by weight.

13.
Science ; 321(5885): 85-9, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18599776

RESUMO

Observations by MESSENGER show that Mercury's magnetosphere is immersed in a comet-like cloud of planetary ions. The most abundant, Na+, is broadly distributed but exhibits flux maxima in the magnetosheath, where the local plasma flow speed is high, and near the spacecraft's closest approach, where atmospheric density should peak. The magnetic field showed reconnection signatures in the form of flux transfer events, azimuthal rotations consistent with Kelvin-Helmholtz waves along the magnetopause, and extensive ultralow-frequency wave activity. Two outbound current sheet boundaries were observed, across which the magnetic field decreased in a manner suggestive of a double magnetopause. The separation of these current layers, comparable to the gyro-radius of a Na+ pickup ion entering the magnetosphere after being accelerated in the magnetosheath, may indicate a planetary ion boundary layer.

14.
Nature ; 415(6875): 994-6, 2002 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-11875559

RESUMO

Several planetary missions have reported the presence of substantial numbers of energetic ions and electrons surrounding Jupiter; relativistic electrons are observable up to several astronomical units (au) from the planet. A population of energetic (>30[?]keV) neutral particles also has been reported, but the instrumentation was not able to determine the mass or charge state of the particles, which were subsequently labelled energetic neutral atoms. Although images showing the presence of the trace element sodium were obtained, the source and identity of the neutral atoms---and their overall significance relative to the loss of charged particles from Jupiter's magnetosphere---were unknown. Here we report the discovery by the Cassini spacecraft of a fast (>103[?]km[?]s-1) and hot magnetospheric neutral wind extending more than 0.5[?]au from Jupiter, and the presence of energetic neutral atoms (both hot and cold) that have been accelerated by the electric field in the solar wind. We suggest that these atoms originate in volcanic gases from Io, undergo significant evolution through various electromagnetic interactions, escape Jupiter's magnetosphere and then populate the environment around the planet. Thus a 'nebula' is created that extends outwards over hundreds of jovian radii.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa