Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(5)2020 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-32182686

RESUMO

Plant uridine 5'-diphosphate glycosyltransferases (UGTs) influence the physiochemical properties of several classes of specialized metabolites including triterpenoids via glycosylation. To uncover the evolutionary past of UGTs of soyasaponins (a group of beneficial triterpene glycosides widespread among Leguminosae), the UGT gene superfamily in Medicago truncatula, Glycine max, Phaseolus vulgaris, Lotus japonicus, and Trifolium pratense genomes were systematically mined. A total of 834 nonredundant UGTs were identified and categorized into 98 putative orthologous loci (POLs) using tree-based and graph-based methods. Major key findings in this study were of, (i) 17 POLs represent potential catalysts for triterpene glycosylation in legumes, (ii) UGTs responsible for the addition of second (UGT73P2: galactosyltransferase and UGT73P10: arabinosyltransferase) and third (UGT91H4: rhamnosyltransferase and UGT91H9: glucosyltransferase) sugars of the C-3 sugar chain of soyasaponins were resulted from duplication events occurred before and after the hologalegina-millettoid split, respectively, and followed neofunctionalization in species-/ lineage-specific manner, and (iii) UGTs responsible for the C-22-O glycosylation of group A (arabinosyltransferase) and DDMP saponins (DDMPtransferase) and the second sugar of C-22 sugar chain of group A saponins (UGT73F2: glucosyltransferase) may all share a common ancestor. Our findings showed a way to trace the evolutionary history of UGTs involved in specialized metabolism.


Assuntos
Glicosiltransferases/genética , Triterpenos/metabolismo , Fabaceae/enzimologia , Fabaceae/genética , Glicosilação , Lotus/enzimologia , Lotus/genética , Medicago truncatula/enzimologia , Medicago truncatula/genética , Phaseolus/enzimologia , Phaseolus/genética , Saponinas/metabolismo , Glycine max/enzimologia , Glycine max/genética , Trifolium/enzimologia , Trifolium/genética
2.
Plant Cell Physiol ; 60(5): 1082-1097, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753604

RESUMO

Triterpenes (C30) constitute one of the diverse class of natural products with potential applications in food, cosmetic and pharmaceutical industries. Soyasaponins are oleanane-type triterpenoids widespread among legumes and particularly abundant in soybean seeds. They have associated with various pharmacological implications and undesirable taste properties of soybean-based food products. Uncovering the biosynthetic genes of soyasaponins will provide new opportunities to control the pathway for human benefits. However, the pathway of soyasaponin biosynthesis has not been fully elucidated in part because of a paucity of natural mutants. Here, we applied a structured high-density soybean mutant library for the forward genetic screening of triterpenoid biosynthesis. The seed soyasaponin polymorphism in the mutant library was evaluated using a high-throughput thin-layer chromatography and liquid chromatography tandem mass spectrometry analysis. This screening identified 35 mutants (3.85% of 909 mutant lines) with seven unusual soyasaponin phenotypes (Categories 1-7), which was greater than the number of natural mutants reported previously (22 mutants, 0.18% of ∼12,428 accessions). Nine unique intermediates of soyasaponin biosynthesis were identified and their chemical structures were estimated based on their MS/MS fragment patterns. Based on published information, 19 mutants could be associated with loss of function of four individual soyasaponin biosynthesis genes identified through expressed sequence tag mining or positional cloning, whereas the remaining 16 mutants were novel and may facilitate discovery of the unknown biosynthetic genes of soyasaponins. Our approach and library may help to identify new phenotype materials and causative genes associated with specialized metabolite production and other traits.


Assuntos
Glycine max/genética , Triterpenos/metabolismo , Mutação/genética , Saponinas/metabolismo , Espectrometria de Massas em Tandem
3.
Mol Genet Genomics ; 290(2): 521-30, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25325993

RESUMO

Chinese cabbage (Brassica rapa subsp. pekinensis) is an economically important vegetable that has encountered four rounds of polyploidization. The fourth event, whole genome triplication (WGT), occurred after its divergence from Arabidopsis. Expansins (EXPs) are cell wall loosening proteins that participate in cell wall modification processes. In this study, the impacts of WGT on the B. rapa expansin (BrEXP) superfamily were evaluated. Whole genome screening of B. rapa identified 32 loci coding 53 expansin genes. Fifteen of the loci maintained a single gene copy, 15 maintained two gene copies and 2 maintained three gene copies. Six loci had no synteny to any Arabidopsis thaliana orthologs. Two loci were involved in tandem duplication. Segmental duplication and fragment recombination were dominant in accelerating BrEXP evolution. Three genes (BrEXPA7, BrEXLA1 and BrEXLA2) lost one of their ancestral introns, two genes (BrEXPA18 and BrEXPB6) gained new introns, and a domain tandem repeat (BrEXPA18) and domain recombination (Bra016981; not considered as expansin) were observed in one gene each. Further, domain deletion was observed in an additional five genes (Bra033068, Bra000142, Bra025800, Bra016473 and Bra004891, not considered as expansins) that lost one of their expansin-specific domains evolutionarily. These findings provide a basis for the evolution and modification of the BrEXP superfamily after a WGT event, which will help in determining the functional characteristics of BrEXPs.


Assuntos
Brassica rapa/genética , Genoma de Planta , Proteínas de Plantas/genética , Mapeamento Cromossômico , Evolução Molecular , Duplicação Gênica , Filogenia , Ploidias , Sintenia
4.
Mol Genet Genomics ; 290(6): 2279-95, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26123085

RESUMO

RNA-binding glycine-rich (RBG) proteins play diverse roles in plant growth, development, protection and genome organization. An overly broad definition for class IV glycine-rich proteins (GRPs), namely RNA-binding activity and a glycine-rich C-terminus, has resulted in many distantly related and/or non-related proteins being grouped into this class of RBGs. This definition has hampered the study of RBG evolution. In this study, we used a comparative genomic approach consisting of ortholog, homolog, synteny and phylogenetic analyses to legitimately exclude all distantly/non-related proteins from class IV GRPs and to identify 15, 22, 12 and 18 RBG proteins in Arabidopsis, Chinese cabbage, rice and maize genomes, respectively. All identified RBGs could be divided into three subclasses, namely RBGA, RBGB and RBGD, which may be derived from a common ancestor. We assigned RBGs excluded from class IV GRPs to a separate RBG superfamily. RBGs have evolved and diversified in different species via different mechanisms; segmental duplication and recombination have had major effects, with tandem duplication, intron addition/deletion and domain recombination/deletion playing minor roles. Loss and retention of duplicated RBGs after polyploidization has been species and subclass specific. For example, following recent whole-genome duplication and triplication in maize and Chinese cabbage, respectively, most duplicated copies of RBGA have been lost in maize while RBGD duplicates have been retained; in Chinese cabbage, in contrast, RBGA duplicates have been retained while RBGD duplicates have been lost. Our findings reveal fundamental information and shed new light on the structural characteristics and evolutionary dynamics of RBGs.


Assuntos
Evolução Molecular , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Plantas/genética , Proteínas de Ligação a RNA/genética , Terminologia como Assunto , Cromossomos de Plantas , Genoma de Planta , Glicina/metabolismo , Proteínas de Plantas/metabolismo , Plantas/classificação , Proteínas de Ligação a RNA/metabolismo , Recombinação Genética , Especificidade da Espécie
5.
Biosci Biotechnol Biochem ; 78(12): 1988-96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25127168

RESUMO

Eight wild soybean accessions with different saponin phenotypes were used to examine saponin composition and relative saponin quantity in various tissues of mature seeds and two-week-old seedlings by LC-PDA/MS/MS. Saponin composition and content were varied according to tissues and accessions. The average total saponin concentration in 1 g mature dry seeds of wild soybean was 16.08 ± 3.13 µmol. In two-week-old seedlings, produced from 1 g mature seeds, it was 27.94 ± 6.52 µmol. Group A saponins were highly concentrated in seed hypocotyl (4.04 ± 0.71 µmol). High concentration of DDMP saponins (7.37 ± 5.22 µmol) and Sg-6 saponins (2.19 ± 0.59 µmol) was found in cotyledonary leaf. In seedlings, the amounts of group A and Sg-6 saponins reduced 2.3- and 1.3-folds, respectively, while DDMP + B + E saponins increased 2.5-fold than those of mature seeds. Our findings show that the group A and Sg-6 saponins in mature seeds were degraded and/or translocated by germination whereas DDMP saponins were newly synthesized.


Assuntos
Glycine max/química , Saponinas/química , Plântula/química , Germinação , Estrutura Molecular , Extratos Vegetais/química , Saponinas/isolamento & purificação
6.
Gene ; 816: 146169, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35026291

RESUMO

Aldo-keto reductase-domain (PF00248) containing proteins (AKRs) are NAD(P)(H)-dependent oxidoreductases of a multigene superfamily that mediate versatile functions in plants ranging from detoxification, metal chelation, potassium ion efflux to specialized metabolism. To uncover the complete repertoire of AKR gene superfamily in plants, a systematic kingdom-wide identification, phylogeny reconstruction, classification and synteny network clustering analyses were performed in this study using 74 diverse plant genomes. Plant AKRs were omnipresent, legitimately classified into 4 groups (based on phylogeny) and 14 subgroups (based on the ≥ 60% of protein sequence identity). Species composition of AKR subgroups highlights their distinct emergence during plant evolution. Loss of AKR subgroups among plants was apparent and that various lineage-, order/family- and species-specific losses were observed. The subgroups IA, IVB and IVF were flourished and diversified well during plant evolution, likely related to the complexity of plant's specialized metabolism and environmental adaptation. About 65% of AKRs were in genomic synteny regions across the plant kingdom and the AKRs relevant to important functions (e.g. vitamin B6 metabolism) were in profoundly conserved angiosperm-wide synteny communities. This study underscores the evolutionary landscape of plant AKRs and provides a comprehensive resource to facilitate the functional characterization of them.


Assuntos
Aldo-Ceto Redutases/genética , Evolução Molecular , Genes de Plantas , Plantas/enzimologia , Sintenia , Aldo-Ceto Redutases/classificação , Filogenia , Plantas/genética
7.
Front Plant Sci ; 13: 774885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371145

RESUMO

Multidrug and toxic compound extrusion (MATE) transporters comprise a multigene family that mediates multiple functions in plants through the efflux of diverse substrates including organic molecules, specialized metabolites, hormones, and xenobiotics. MATE classification based on genome-wide studies remains ambiguous, likely due to a lack of large-scale phylogenomic studies and/or reference sequence datasets. To resolve this, we established a phylogeny of the plant MATE gene family using a comprehensive kingdom-wide phylogenomic analysis of 74 diverse plant species. We identified more than 4,000 MATEs, which were classified into 14 subgroups based on a systematic bioinformatics pipeline using USEARCH, blast+ and synteny network tools. Our classification was performed using a four-step process, whereby MATEs sharing ≥ 60% protein sequence identity with a ≤ 1E-05 threshold at different sequence lengths (either full-length, ≥ 60% length, or ≥ 150 amino acids) or retaining in the similar synteny blocks were assigned to the same subgroup. In this way, we assigned subgroups to 95.8% of the identified MATEs, which we substantiated using synteny network clustering analysis. The subgroups were clustered under four major phylogenetic groups and named according to their clockwise appearance within each group. We then generated a reference sequence dataset, the usefulness of which was demonstrated in the classification of MATEs in additional species not included in the original analysis. Approximately 74% of the plant MATEs exhibited synteny relationships with angiosperm-wide or lineage-, order/family-, and species-specific conservation. Most subgroups evolved independently, and their distinct evolutionary trends were likely associated with the development of functional novelties or the maintenance of conserved functions. Together with the systematic classification and synteny network profiling analyses, we identified all the major evolutionary events experienced by the MATE gene family in plants. We believe that our findings and the reference dataset provide a valuable resource to guide future functional studies aiming to explore the key roles of MATEs in different aspects of plant physiology. Our classification framework can also be readily extendable to other (super) families.

8.
Gene ; 778: 145472, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33549715

RESUMO

Plant type III polyketide synthases (PKSs) are associated with various functions in plant growth, development and defense by providing a multitude of polyketide scaffolds for diverse specialized metabolic pathways (SMPs). To decipher banana PKSs involved in specialized metabolism, genome-wide comparative analyses were conducted with A (Musa acuminata) and B (Musa balbisiana) genomes of banana. Both genomes retained eight chalcone synthases (CHSs), seven curcumin synthases (CURSs), three diketidyl-CoA synthases (DCSs) and one anther specific CHS (ASC). Segmental (42%) and tandem (37%) duplication events majorly flourished the banana PKS family. Six of 19 PKSs of A genome (designated as MaPKSs) showed relatively a higher expression in the root, corm, sheath, leaf and embryogenic cell suspension (ECS) of banana. To determine the defense response of MaPKSs and to highlight their candidacy in various SMPs, expression profiling was conducted by qPCR in ECSs treated with 100/200 µM of jasmonic acid (JA) and salicylic acid (SA) at 24/48 h. Maximum and subordinate expression induction of MaPKSs was apparent respectively against JA and SA treatments. Notably, most MaPKSs achieved their peak expression within 24 h of JA and the total flavonoid content was reached maximum within 24 h of JA/SA elicitations. Considering the homology, phylogeny, and expression levels in each analyzed sample (n = 13), three CHSs, three DCSs along with three CURSs and one ASC were selected as most promising candidates respectively for flavonoids, phenylphenalenones and sporopollenin biosynthesis in banana. Our findings provide a first-line resource to disclose the functions of banana PKSs involved in distinct SMPs.


Assuntos
Perfilação da Expressão Gênica/métodos , Musa/classificação , Policetídeo Sintases/genética , Sequenciamento Completo do Genoma/métodos , Biopolímeros/biossíntese , Carotenoides , Ciclopentanos/farmacologia , Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genoma de Planta , Redes e Vias Metabólicas/efeitos dos fármacos , Musa/genética , Oxilipinas/farmacologia , Fenalenos/metabolismo , Filogenia , Proteínas de Plantas/genética , Ácido Salicílico/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa