RESUMO
BACKGROUND: Neutrophil extracellular traps (NETs) are composed of DNA, enzymes, and citrullinated histones that are expelled by neutrophils in the process of NETosis. NETs accumulate in the aorta and kidneys in hypertension. PAD4 (protein-arginine deiminase-4) is a calcium-dependent enzyme that is essential for NETosis. TRPV4 (transient receptor potential cation channel subfamily V member 4) is a mechanosensitive calcium channel expressed in neutrophils. Thus, we hypothesize that NETosis contributes to hypertension via NET-mediated endothelial cell (EC) dysfunction. METHODS: NETosis-deficient Padi4-/- mice were treated with Ang II (angiotensin II). Blood pressure was measured by radiotelemetry, and vascular reactivity was measured with wire myography. Neutrophils were cultured with or without ECs and exposed to normotensive or hypertensive uniaxial stretch. NETosis was measured by flow cytometry. ECs were treated with citrullinated histone H3, and gene expression was measured by quantitative reverse transcription PCR. Aortic rings were incubated with citrullinated histone H3, and wire myography was performed to evaluate EC function. Neutrophils were treated with the TRPV4 agonist GSK1016790A. Calcium influx was measured using Fluo-4 dye, and NETosis was measured by immunofluorescence. RESULTS: Padi4-/- mice exhibited attenuated hypertension, reduced aortic inflammation, and improved EC-dependent vascular relaxation in response to Ang II. Coculture of neutrophils with ECs and exposure to hypertensive uniaxial stretch increased NETosis and accumulation of neutrophil citrullinated histone H3. Histone H3 and citrullinated histone H3 exposure attenuates EC-dependent vascular relaxation. Treatment of neutrophils with the TRPV4 agonist GSK1016790A increases intracellular calcium and NETosis. CONCLUSIONS: These observations identify a role of NETosis in the pathogenesis of hypertension. Moreover, they define an important role of EC stretch and TRPV4 as initiators of NETosis. Finally, they define a role of citrullinated histones as drivers of EC dysfunction in hypertension.
Assuntos
Armadilhas Extracelulares , Hipertensão , Camundongos Knockout , Proteína-Arginina Desiminase do Tipo 4 , Canais de Cátion TRPV , Animais , Armadilhas Extracelulares/metabolismo , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Camundongos , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Neutrófilos/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Angiotensina II/farmacologia , Humanos , Histonas/metabolismo , Pressão Sanguínea , Células Cultivadas , Células Endoteliais/metabolismoRESUMO
BACKGROUND: Hypertension is characterized by CD8+ (cluster differentiation 8) T cell activation and infiltration into peripheral tissues. CD8+ T cell activation requires proteasomal processing of antigenic proteins. It has become clear that isoLG (isolevuglandin)-adduced peptides are antigenic in hypertension; however, IsoLGs inhibit the constitutive proteasome. We hypothesized that immunoproteasomal processing of isoLG-adducts is essential for CD8+ T cell activation and inflammation in hypertension. METHODS: IsoLG adduct processing was studied in murine dendritic cells (DCs), endothelial cells (ECs), and B8 fibroblasts. The role of the proteasome and the immunoproteasome in Ang II (angiotensin II)-induced hypertension was studied in C57BL/6 mice treated with bortezomib or the immunoproteasome inhibitor PR-957 and by studying mice lacking 3 critical immunoproteasome subunits (triple knockout mouse). We also examined hypertension in mice lacking the critical immunoproteasome subunit LMP7 (large multifunctional peptidase 7) specifically in either DCs or ECs. RESULTS: We found that oxidant stress increases the presence of isoLG adducts within MHC-I (class I major histocompatibility complex), and immunoproteasome overexpression augments this. Pharmacological or genetic inhibition of the immunoproteasome attenuated hypertension and tissue inflammation. Conditional deletion of LMP7 in either DCs or ECs attenuated hypertension and vascular inflammation. Finally, we defined the role of the innate immune receptors STING (stimulator of interferon genes) and TLR7/8 (toll-like receptor 7/8) as drivers of LMP7 expression in ECs. CONCLUSIONS: These studies define a previously unknown role of the immunoproteasome in DCs and ECs in CD8+ T cell activation. The immunoproteasome in DCs and ECs is critical for isoLG-adduct presentation to CD8+ T cells, and in the endothelium, this guides homing and infiltration of T cells to specific tissues.
Assuntos
Bortezomib , Linfócitos T CD8-Positivos , Células Dendríticas , Hipertensão , Complexo de Endopeptidases do Proteassoma , Animais , Masculino , Camundongos , Angiotensina II , Bortezomib/farmacologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/imunologia , Fibroblastos/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Hipertensão/metabolismo , Hipertensão/imunologia , Ativação Linfocitária , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligopeptídeos , Estresse Oxidativo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologiaRESUMO
Heart failure continues to be a significant global health concern, causing substantial morbidity and mortality. The limited ability of the adult heart to regenerate has posed challenges in finding effective treatments for cardiac pathologies. While various medications and surgical interventions have been used to improve cardiac function, they are not able to address the extensive loss of functioning cardiomyocytes that occurs during cardiac injury. As a result, there is growing interest in understanding how the cell cycle is regulated and exploring the potential for stimulating cardiomyocyte proliferation as a means of promoting heart regeneration. This review aims to provide an overview of current knowledge on cell cycle regulation and mechanisms underlying cardiomyocyte proliferation in cases of heart failure, while also highlighting established and novel therapeutic strategies targeting this area for treatment purposes.
Assuntos
Ciclo Celular , Proliferação de Células , Insuficiência Cardíaca , Miócitos Cardíacos , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Humanos , Animais , RegeneraçãoRESUMO
BACKGROUND: Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Genome-wide association studies (GWAS) have identified many single nucleotide polymorphisms (SNPs) appearing in non-coding genomic regions in CVDs. The SNPs may alter gene expression by modifying transcription factor (TF) binding sites and lead to functional consequences in cardiovascular traits or diseases. To understand the underlying molecular mechanisms, it is crucial to identify which variations are involved and how they affect TF binding. METHODS: The SNEEP (SNP exploration and analysis using epigenomics data) pipeline was used to identify regulatory SNPs, which alter the binding behavior of TFs and link GWAS SNPs to their potential target genes for six CVDs. The human-induced pluripotent stem cells derived cardiomyocytes (hiPSC-CMs), monoculture cardiac organoids (MCOs) and self-organized cardiac organoids (SCOs) were used in the study. Gene expression, cardiomyocyte size and cardiac contractility were assessed. RESULTS: By using our integrative computational pipeline, we identified 1905 regulatory SNPs in CVD GWAS data. These were associated with hundreds of genes, half of them non-coding RNAs (ncRNAs), suggesting novel CVD genes. We experimentally tested 40 CVD-associated non-coding RNAs, among them RP11-98F14.11, RPL23AP92, IGBP1P1, and CTD-2383I20.1, which were upregulated in hiPSC-CMs, MCOs and SCOs under hypoxic conditions. Further experiments showed that IGBP1P1 depletion rescued expression of hypertrophic marker genes, reduced hypoxia-induced cardiomyocyte size and improved hypoxia-reduced cardiac contractility in hiPSC-CMs and MCOs. CONCLUSIONS: IGBP1P1 is a novel ncRNA with key regulatory functions in modulating cardiomyocyte size and cardiac function in our disease models. Our data suggest ncRNA IGBP1P1 as a potential therapeutic target to improve cardiac function in CVDs.
Assuntos
Doenças Cardiovasculares , Polimorfismo de Nucleotídeo Único , Humanos , Polimorfismo de Nucleotídeo Único/genética , Estudo de Associação Genômica Ampla , Doenças Cardiovasculares/genética , Genômica , GenomaRESUMO
BACKGROUND: Salt sensitivity of blood pressure is an independent predictor of cardiovascular morbidity and mortality. The exact mechanism by which salt intake increases blood pressure and cardiovascular risk is unknown. We previously found that sodium entry into antigen-presenting cells (APCs) via the amiloride-sensitive epithelial sodium channel EnaC (epithelial sodium channel) leads to the formation of IsoLGs (isolevuglandins) and release of proinflammatory cytokines to activate T cells and modulate salt-sensitive hypertension. In the current study, we hypothesized that ENaC-dependent entry of sodium into APCs activates the NLRP3 (NOD [nucleotide-binding and oligomerization domain]-like receptor family pyrin domain containing 3) inflammasome via IsoLG formation leading to salt-sensitive hypertension. METHODS: We performed RNA sequencing on human monocytes treated with elevated sodium in vitro and Cellular Indexing of Transcriptomes and Epitopes by Sequencing analysis of peripheral blood mononuclear cells from participants rigorously phenotyped for salt sensitivity of blood pressure using an established inpatient protocol. To determine mechanisms, we analyzed inflammasome activation in mouse models of deoxycorticosterone acetate salt-induced hypertension as well as salt-sensitive mice with ENaC inhibition or expression, IsoLG scavenging, and adoptive transfer of wild-type dendritic cells into NLRP3 deficient mice. RESULTS: We found that high levels of salt exposure upregulates the NLRP3 inflammasome, pyroptotic and apoptotic caspases, and IL (interleukin)-1ß transcription in human monocytes. Cellular Indexing of Transcriptomes and Epitopes by Sequencing revealed that components of the NLRP3 inflammasome and activation marker IL-1ß dynamically vary with changes in salt loading/depletion. Mechanistically, we found that sodium-induced activation of the NLRP3 inflammasome is ENaC and IsoLG dependent. NLRP3 deficient mice develop a blunted hypertensive response to elevated sodium, and this is restored by the adoptive transfer of NLRP3 replete APCs. CONCLUSIONS: These findings reveal a mechanistic link between ENaC, inflammation, and salt-sensitive hypertension involving NLRP3 inflammasome activation in APCs. APC activation via the NLRP3 inflammasome can serve as a potential diagnostic biomarker for salt sensitivity of blood pressure.
Assuntos
Hipertensão , Inflamassomos , Animais , Canais Epiteliais de Sódio/genética , Epitopos , Humanos , Hipertensão/induzido quimicamente , Hipertensão/genética , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sódio/metabolismo , Cloreto de Sódio/metabolismo , Cloreto de Sódio na Dieta/efeitos adversosRESUMO
Long non-coding RNAs (lncRNAs) can act as regulatory RNAs which, by altering the expression of target genes, impact on the cellular phenotype and cardiovascular disease development. Endothelial lncRNAs and their vascular functions are largely undefined. Deep RNA-Seq and FANTOM5 CAGE analysis revealed the lncRNA LINC00607 to be highly enriched in human endothelial cells. LINC00607 was induced in response to hypoxia, arteriosclerosis regression in non-human primates, post-atherosclerotic cultured endothelial cells from patients and also in response to propranolol used to induce regression of human arteriovenous malformations. siRNA knockdown or CRISPR/Cas9 knockout of LINC00607 attenuated VEGF-A-induced angiogenic sprouting. LINC00607 knockout in endothelial cells also integrated less into newly formed vascular networks in an in vivo assay in SCID mice. Overexpression of LINC00607 in CRISPR knockout cells restored normal endothelial function. RNA- and ATAC-Seq after LINC00607 knockout revealed changes in the transcription of endothelial gene sets linked to the endothelial phenotype and in chromatin accessibility around ERG-binding sites. Mechanistically, LINC00607 interacted with the SWI/SNF chromatin remodeling protein BRG1. CRISPR/Cas9-mediated knockout of BRG1 in HUVEC followed by CUT&RUN revealed that BRG1 is required to secure a stable chromatin state, mainly on ERG-binding sites. In conclusion, LINC00607 is an endothelial-enriched lncRNA that maintains ERG target gene transcription by interacting with the chromatin remodeler BRG1 to ultimately mediate angiogenesis.
Assuntos
RNA Longo não Codificante , Animais , Humanos , Camundongos , Cromatina , DNA Helicases/genética , DNA Helicases/metabolismo , Células Endoteliais/metabolismo , Camundongos SCID , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/genética , Neovascularização FisiológicaRESUMO
Fructose is a major component of dietary sugar and its overconsumption exacerbates key pathological features of metabolic syndrome. The central fructose-metabolising enzyme is ketohexokinase (KHK), which exists in two isoforms: KHK-A and KHK-C, generated through mutually exclusive alternative splicing of KHK pre-mRNAs. KHK-C displays superior affinity for fructose compared with KHK-A and is produced primarily in the liver, thus restricting fructose metabolism almost exclusively to this organ. Here we show that myocardial hypoxia actuates fructose metabolism in human and mouse models of pathological cardiac hypertrophy through hypoxia-inducible factor 1α (HIF1α) activation of SF3B1 and SF3B1-mediated splice switching of KHK-A to KHK-C. Heart-specific depletion of SF3B1 or genetic ablation of Khk, but not Khk-A alone, in mice, suppresses pathological stress-induced fructose metabolism, growth and contractile dysfunction, thus defining signalling components and molecular underpinnings of a fructose metabolism regulatory system crucial for pathological growth.
Assuntos
Cardiomiopatia Hipertrófica/metabolismo , Frutoquinases/metabolismo , Frutose/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fosfoproteínas/metabolismo , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Processamento Alternativo , Animais , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/fisiopatologia , Modelos Animais de Doenças , Frutoquinases/deficiência , Frutoquinases/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Isoenzimas/deficiência , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Síndrome Metabólica/metabolismo , Camundongos , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Fatores de Processamento de RNA , Ribonucleoproteína Nuclear Pequena U2/deficiência , Ribonucleoproteína Nuclear Pequena U2/genéticaRESUMO
Cellular specialization and interaction with other cell types in cardiac tissue is essential for the coordinated function of cell populations in the heart. The complex interplay between cardiomyocytes, endothelial cells and fibroblasts is necessary for adaptation but can also lead to pathophysiological remodeling. To understand this complex interplay, we developed 3D vascularized cardiac tissue mimetics (CTM) to study heterocellular cross-talk in hypertrophic, hypoxic and fibrogenic environments. This 3D platform responds to physiologic and pathologic stressors and mimics the microenvironment of diseased tissue. In combination with endothelial cell fluorescence reporters, these cardiac tissue mimetics can be used to precisely visualize and quantify cellular and functional responses upon stress stimulation. Utilizing this platform, we demonstrate that stimulation of α/ß-adrenergic receptors with phenylephrine (PE) promotes cardiomyocyte hypertrophy, metabolic maturation and vascularization of CTMs. Increased vascularization was promoted by conditioned medium of PE-stimulated cardiomyocytes and blocked by inhibiting VEGF or upon ß-adrenergic receptor antagonist treatment, demonstrating cardiomyocyte-endothelial cross-talk. Pathophysiological stressors such as severe hypoxia reduced angiogenic sprouting and increased cell death, while TGF ß2 stimulation increased collagen deposition concomitant to endothelial-to-mesenchymal transition. In sum, we have developed a cardiac 3D culture system that reflects native cardiac tissue function, metabolism and morphology - and for the first time enables the tracking and analysis of cardiac vascularization dynamics in physiology and pathology.
Assuntos
Biomimética , Neovascularização Fisiológica , Engenharia Tecidual , Animais , Células Cultivadas , Feminino , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Fenilefrina/farmacologia , Ratos Sprague-Dawley , Estresse Fisiológico/efeitos dos fármacosRESUMO
BACKGROUND: Enhancers are genomic regulatory elements conferring spatiotemporal and signal-dependent control of gene expression. Recent evidence suggests that enhancers can generate noncoding enhancer RNAs, but their (patho)biological functions remain largely elusive. METHODS: We performed chromatin immunoprecipitation-coupled sequencing of histone marks combined with RNA sequencing of left ventricular biopsies from experimental and genetic mouse models of human cardiac hypertrophy to identify transcripts revealing enhancer localization, conservation with the human genome, and hypoxia-inducible factor 1α dependence. The most promising candidate, hypoxia-inducible enhancer RNA ( HERNA)1, was further examined by investigating its capacity to modulate neighboring coding gene expression by binding to their gene promoters by using chromatin isolation by RNA purification and λN-BoxB tethering-based reporter assays. The role of HERNA1 and its neighboring genes for pathological stress-induced growth and contractile dysfunction, and the therapeutic potential of HERNA1 inhibition was studied in gapmer-mediated loss-of-function studies in vitro using human induced pluripotent stem cell-derived cardiomyocytes and various in vivo models of human pathological cardiac hypertrophy. RESULTS: HERNA1 is robustly induced on pathological stress. Production of HERNA1 is initiated by direct hypoxia-inducible factor 1α binding to a hypoxia-response element in the histoneH3-lysine27acetylation marks-enriched promoter of the enhancer and confers hypoxia responsiveness to nearby genes including synaptotagmin XVII, a member of the family of membrane-trafficking and Ca2+-sensing proteins and SMG1, encoding a phosphatidylinositol 3-kinase-related kinase. Consequently, a substrate of SMG1, ATP-dependent RNA helicase upframeshift 1, is hyperphoshorylated in a HERNA1- and SMG1-dependent manner. In vitro and in vivo inactivation of SMG1 and SYT17 revealed overlapping and distinct roles in modulating cardiac hypertrophy. Finally, in vivo administration of antisense oligonucleotides targeting HERNA1 protected mice from stress-induced pathological hypertrophy. The inhibition of HERNA1 postdisease development reversed left ventricular growth and dysfunction, resulting in increased overall survival. CONCLUSIONS: HERNA1 is a novel heart-specific noncoding RNA with key regulatory functions in modulating the growth, metabolic, and contractile gene program in disease, and reveals a molecular target amenable to therapeutic exploitation.
Assuntos
Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/prevenção & controle , Cardiomiopatia Hipertrófica/prevenção & controle , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Miócitos Cardíacos/metabolismo , Oligonucleotídeos Antissenso/administração & dosagem , RNA não Traduzido/metabolismo , Animais , Sítios de Ligação , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Estudos de Casos e Controles , Modelos Animais de Doenças , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/deficiência , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , Regiões Promotoras Genéticas , RNA não Traduzido/genética , Transdução de Sinais , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismoRESUMO
Studying how different genotypes respond to environmental variation is essential to understand the genetic basis of adaptation. The Mexican tetra, Astyanax mexicanus, has cave and surface-dwelling morphotypes that have adapted to entirely different environments in the wild, and are now successfully maintained in lab conditions. While this has enabled the identification of genetic adaptations underlying a variety of physiological processes, few studies have directly compared morphotypes between lab-reared and natural populations. Such comparative approaches could help dissect the varying effects of environment and morphotype, and determine the extent to which phenomena observed in the lab are generalizable to conditions in the field. To this end, we take a transcriptomic approach to compare the Pachón cavefish and their surface fish counterparts in their natural habitats and the lab environment. We identify key changes in expression of genes implicated in metabolism and physiology between groups of fish, suggesting that morphotype (surface or cave) and environment (natural or lab) both alter gene expression. We find gene expression differences between cave and surface fish in their natural habitats are much larger than differences in expression between morphotypes in the lab environment. However, lab-raised cave and surface fish still exhibit numerous gene expression changes, supporting genetically encoded changes in livers of this species. From this, we conclude that a controlled laboratory environment may serve as an ideal setting to study the genetic underpinnings of metabolic and physiological differences between the cavefish and surface fish.
Assuntos
Characidae/metabolismo , Transcriptoma/fisiologia , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Animais , Cavernas , Characidae/anatomia & histologia , Characidae/genética , Escuridão , Meio Ambiente , Feminino , Perfilação da Expressão Gênica , Luz , Fígado/anatomia & histologia , Fígado/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA , Transcriptoma/genéticaRESUMO
Dietary obesity is a major factor in the development of type 2 diabetes and is associated with intra-adipose tissue hypoxia and activation of hypoxia-inducible factor 1α (HIF1α). Here we report that, in mice, Hif1α activation in visceral white adipocytes is critical to maintain dietary obesity and associated pathologies, including glucose intolerance, insulin resistance, and cardiomyopathy. This function of Hif1α is linked to its capacity to suppress ß-oxidation, in part, through transcriptional repression of sirtuin 2 (Sirt2) NAD(+)-dependent deacetylase. Reduced Sirt2 function directly translates into diminished deacetylation of PPARγ coactivator 1α (Pgc1α) and expression of ß-oxidation and mitochondrial genes. Importantly, visceral adipose tissue from human obese subjects is characterized by high levels of HIF1α and low levels of SIRT2. Thus, by negatively regulating the Sirt2-Pgc1α regulatory axis, Hif1α negates adipocyte-intrinsic pathways of fatty acid catabolism, thereby creating a metabolic state supporting the development of obesity.
Assuntos
Adipócitos/metabolismo , Metabolismo Energético , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , NAD/metabolismo , Obesidade/patologia , Sirtuína 2/metabolismo , Acetilação , Adipócitos/citologia , Animais , Sequência de Bases , Diferenciação Celular , Células Cultivadas , Dieta , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Alinhamento de Sequência , Sirtuína 2/genética , Transativadores/metabolismo , Fatores de TranscriçãoRESUMO
BACKGROUND: Astyanax mexicanus is a well-established fish model system for evolutionary and developmental biology research. These fish exist as surface forms that inhabit rivers and 30 different populations of cavefish. Despite important progress in the deployment of new technologies, deep mechanistic insights into the genetic basis of evolution, development, and behavior have been limited by a lack of transgenic lines commonly used in genetic model systems. RESULTS: Here, we expand the toolkit of transgenesis by characterizing two novel stable transgenic lines that were generated using the highly efficient Tol2 system, commonly used to generate transgenic zebrafish. A stable transgenic line consisting of the zebrafish ubiquitin promoter expresses enhanced green fluorescent protein ubiquitously throughout development in a surface population of Astyanax. To define specific cell-types, a Cntnap2-mCherry construct labels lateral line mechanosensory neurons in zebrafish. Strikingly, both constructs appear to label the predicted cell types, suggesting many genetic tools and defined promoter regions in zebrafish are directly transferrable to cavefish. CONCLUSION: The lines provide proof-of-principle for the application of Tol2 transgenic technology in A. mexicanus. Expansion on these initial transgenic lines will provide a platform to address broadly important problems in the quest to bridge the genotype-phenotype gap.
Assuntos
Técnicas de Transferência de Genes , Transposases , Animais , Animais Geneticamente Modificados/genética , Peixes , Proteínas de Fluorescência Verde/genética , Sistema da Linha Lateral , Métodos , Modelos Animais , Regiões Promotoras Genéticas , Estudo de Prova de Conceito , Ubiquitina/genética , Peixe-Zebra/genéticaRESUMO
Cavefish populations of Astyanax mexicanus have increased body fat compared to surface fish populations of the same species when fed ad libitum in the laboratory. We have previously shown that some cavefish populations display hyperphagia (elevated appetite) to increase food consumption, fat deposition and starvation resistance. However, not all cavefish populations display hyperphagia, yet all previously tested cavefish display elevated body fat levels. Here we have extended this analysis by focusing on visceral fat acquisition in three independently derived cavefish populations. We show that cavefish from two independently derived cavefish populations (Pachón and Tinaja) display increased amounts of visceral adipose tissue (VAT) due to hypertrophy of visceral adipocytes while Molino cavefish display hypertrophy but only slightly elevated VAT levels compared to surface fish. Furthermore, we show that Pachón and Tinaja cavefish develop increased VAT even when food intake is matched to surface fish, suggesting appetite independent mechanisms. We show that in the Pachón population, the differences in the visceral fat in adults correlates with changes in the timing of visceral development, making a developmental contribution likely. Visceral fat development in surface fish starts between 10 and 11â¯dpf, while in Pachón cavefish, visceral fat cells become visible as early as 8â¯dpf and develop significantly higher amounts of lipid droplets before surface fish start visceral fat accumulation. We further show that this developmental difference is unique to the Pachón cavefish population, while the Tinaja cavefish population - which displays hyperphagia - starts to develop visceral fat similar to surface fish. We suggest the differences in early adipogenesis in the Pachón population as an additional strategy of increased fat gain in cavefish to adapt to food scarcity.
Assuntos
Adaptação Fisiológica , Adipogenia/fisiologia , Caraciformes/fisiologia , Gordura Intra-Abdominal/fisiologia , Animais , CavernasRESUMO
BACKGROUND: MicroRNAs (miRs) regulate nearly all biological pathways. Because the dysregulation of miRs can lead to disease progression, they are being explored as novel therapeutic targets. However, the cell type-specific effects of miRs in the heart are poorly understood. Thus, we assessed miR target regulation using miR-92a-3p as an example. Inhibition of miR-92a is known to improve endothelial cell function and recovery after acute myocardial infarction. METHODS: miR-92a-3p was inhibited by locked nucleic acid (LNA)-based antimiR (LNA-92a) in mice after myocardial infarction. Expression of regulated genes was evaluated 3 days after myocardial infarction by RNA sequencing of isolated endothelial cells, cardiomyocytes, fibroblasts, and CD45+ hematopoietic cells. RESULTS: LNA-92a depleted miR-92a-3p expression in all cell types and derepressed predicted miR-92a-3p targets in a cell type-specific manner. RNAseq showed endothelial cell-specific regulation of autophagy-related genes. Imaging confirmed increased endothelial cell autophagy in LNA-92a treated relative to control animals. In vitro inhibition of miR-92a-3p augmented EC autophagy, derepressed autophagy-related gene 4a, and increased luciferase activity in autophagy-related gene 4a 3'UTR containing reporters, whereas miR-92a-3p overexpression had the opposite effect. In cardiomyocytes, LNA-92a derepressed metabolism-related genes, notably, the high-density lipoprotein transporter Abca8b. LNA-92a further increased fatty acid uptake and mitochondrial function in cardiomyocytes in vitro. CONCLUSIONS: Our data show that miRs have cell type-specific effects in vivo. Analysis of miR targets in cell subsets disclosed a novel function of miR-92a-3p in endothelial cell autophagy and cardiomyocyte metabolism. Because autophagy is upregulated during ischemia to supply nutrients and cardiomyocyte metabolic-switching improves available substrate utilization, these prosurvival mechanisms may diminish tissue damage.
Assuntos
MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antagomirs/metabolismo , Autofagia , Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Oligonucleotídeos/química , RatosRESUMO
In this review we highlight the role of non-coding RNAs in the development and progression of cardiac pathology and explore the possibility of disease-associated RNAs serving as targets for cardiac-directed therapeutics. Contextually, we focus on the role of stress-induced hypoxia as a driver of disease development and progression through activation of hypoxia inducible factor 1α (HIF1α) and explore mechanisms underlying HIFα function as an enforcer of cardiac pathology through direct transcriptional coupling with the non-coding transcriptome. In the interest of clarity, we will confine our analysis to cardiac pathology and focus on three defining features of the diseased state, namely metabolic, growth and functional reprogramming. It is the aim of this review to explore possible mechanisms through which HIF1α regulation of the non-coding transcriptome connects to spatiotemporal control of gene expression to drive establishment of the diseased state, and to propose strategies for the exploitation of these unique RNAs as targets for clinical therapy. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Assuntos
Cardiomiopatias/genética , Microambiente Celular , Reprogramação Celular , Genoma Humano , MicroRNAs/genética , Miocárdio , RNA Longo não Codificante/genética , Animais , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Cardiomiopatias/terapia , Diferenciação Celular , Hipóxia Celular , Proliferação de Células , Técnicas de Reprogramação Celular , Regulação da Expressão Gênica , Predisposição Genética para Doença , Terapia Genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , MicroRNAs/metabolismo , MicroRNAs/uso terapêutico , Miocárdio/metabolismo , Miocárdio/patologia , Fenótipo , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/uso terapêutico , Transdução de SinaisRESUMO
VEGFR-3 is a transmembrane receptor tyrosine kinase that is activated by its ligands VEGF-C and VEGF-D. Although VEGFR-3 has been linked primarily to the regulation of lymphangiogenesis, in the present study, we demonstrate a role for VEGFR-3 in megakaryopoiesis. Using a human erythroleukemia cell line and primary murine BM cells, we show that VEGFR-3 is expressed on megakaryocytic progenitor cells through to the promegakaryoblast stage. Functionally, specific activation of VEGFR-3 impaired the transition to polyploidy of CD41+ cells in primary BM cultures. Blockade of VEGFR-3 promoted endoreplication consistently. In vivo, long-term activation or blockade of VEGFR-3 did not affect steady-state murine megakaryopoiesis or platelet counts significantly. However, activation of VEGFR-3 in sublethally irradiated mice resulted in significantly elevated numbers of CD41+ cells in the BM and a significant increase in diploid CD41+ cells, whereas the number of polyploid CD41+ cells was reduced significantly. Moreover, activation of VEGFR-3 increased platelet counts in thrombopoietin-treated mice significantly and modulated 5-fluorouracil-induced thrombocytosis strongly, suggesting a regulatory role for VEGFR-3 in megakaryopoiesis.
Assuntos
Células da Medula Óssea/metabolismo , Células Progenitoras de Megacariócitos/metabolismo , Trombopoese , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Antimetabólitos/farmacologia , Western Blotting , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Fluoruracila/farmacologia , Expressão Gênica , Células HEK293 , Humanos , Células Progenitoras de Megacariócitos/efeitos dos fármacos , Megacariócitos/citologia , Megacariócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ésteres de Forbol/farmacologia , Contagem de Plaquetas , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Ploidias , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Trombopoetina/farmacologia , Fator C de Crescimento do Endotélio Vascular/farmacologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genéticaRESUMO
Circadian control of physiology and metabolism is pervasive throughout nature, with circadian disruption contributing to premature aging, neurodegenerative disease, and type 2 diabetes (Musiek et al. 2016; Panda, 2016). It has become increasingly clear that peripheral tissues, such as skeletal muscle, possess cell-autonomous clocks crucial for metabolic homeostasis (Gabriel et al. 2021). In fact, disruption of the skeletal muscle circadian rhythm results in insulin resistance, sarcomere disorganization, and muscle weakness in both vertebrates and non-vertebrates - indicating that maintenance of a functional muscle circadian rhythm provides an adaptive advantage. We and others have found that cavefish possess a disrupted central circadian rhythm and, interestingly, a skeletal muscle phenotype strikingly similar to circadian knock-out mutants; namely, muscle loss, muscle weakness, and insulin resistance (Olsen et al. 2022; Riddle et al. 2018; Mack et al. 2021). However, whether the cavefish muscle phenotype results from muscle-specific circadian disruption remains untested. To this point, we investigated genome-wide, circadian-regulated gene expression within the skeletal muscle of the Astyanax mexicanus - comprised of the river-dwelling surface fish and troglobitic cavefish - providing novel insights into the evolutionary consequence of circadian disruption on skeletal muscle physiology.
RESUMO
It has become clear that circadian clocks in peripheral tissues play important functions. Disruption of the circadian clock in skeletal muscle, for example, results in insulin resistance, sarcomere disorganization, and muscle weakness1. Interestingly, cavefish, which exhibit a disrupted central clock, exhibit similar muscle phenotypes2,3,4, raising the question of whether they are caused by alterations to central or peripheral clocks. Here, we demonstrate a loss in clock function in the skeletal muscle of the Mexican Cavefish Astyanax mexicanus that is associated with reduced rhythmicity of a large number of genes and disrupted nocturnal protein catabolism. Some of the identified genes are associated with metabolic dysfunction in humans.
Assuntos
Characidae , Relógios Circadianos , Animais , Humanos , Ritmo Circadiano/fisiologia , Relógios Circadianos/genética , Músculo Esquelético/fisiologia , MéxicoRESUMO
The tetra fish species Astyanax mexicanus comprises two morphotypes: cavefish that live in caves and surface fish that inhabit rivers and lakes. Because cavefish have adapted to the nutrient-poor conditions in their habitat whereas the surface fish populations can be used as a proxy for the ancestral condition, this species has become a powerful model system for understanding genetic variation underlying metabolic adaptation. The liver plays a critical role in glucose and fat metabolism in the body and hence is an important tissue for studying altered metabolism in health and disease. Cavefish morphs of A. mexicanus have been shown to develop fatty livers and exhibit massive differences in gene expression and chromatin architecture. Primary cell lines from various tissues have become invaluable tools for biochemical, toxicology, and cell biology experiments, as well as genetic and genomic analyses. To enhance the utility of the model system by enabling an expanded set of biochemical and in vitro experiments, we developed protocols for the isolation and maintenance of primary liver cells from A. mexicanus surface fish and cavefish. We also describe methods that can be used for primary cell characterization, including cloning, characterization of cell growth pattern, and lentivirus transduction. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Primary culture of liver cells Support Protocol 1: Maintenance of A. mexicanus primary liver cells Support Protocol 2: Banking of A. mexicanus primary liver cells Support Protocol 3: Recovery of A. mexicanus primary liver cells Support Protocol 4: Primary liver cell cloning Support Protocol 5: Characterization of A. mexicanus primary liver cell growth pattern Basic Protocol 2: Lentiviral transduction of A. mexicanus primary liver cells.
Assuntos
Characidae , Animais , Characidae/genética , Genoma , Adaptação Fisiológica , FígadoRESUMO
Isolevuglandins (isoLGs) are lipid aldehydes that form in the presence of reactive oxygen species (ROS) and drive immune activation. We found that isoLG-adducts are presented within the context of major histocompatibility complexes (MHC-I) by an immunoproteasome dependent mechanism. Pharmacologic inhibition of LMP7, the chymotrypsin subunit of the immunoproteasome, attenuates hypertension and tissue inflammation in the angiotensin II (Ang II) model of hypertension. Genetic loss of function of all immunoproteasome subunits or conditional deletion of LMP7 in dendritic cell (DCs) or endothelial cells (ECs) attenuated hypertension, reduced aortic T cell infiltration, and reduced isoLG-adduct MHC-I interaction. Furthermore, isoLG adducts structurally resemble double-stranded DNA and contribute to the activation of STING in ECs. These studies define a critical role of the immunoproteasome in the processing and presentation of isoLG-adducts. Moreover they define a role of LMP7 as a regulator of T cell activation and tissue infiltration in hypertension.