Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 294(11): 3987-3999, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30670589

RESUMO

Phycoerythrin (PE) is a green light-absorbing protein present in the light-harvesting complex of cyanobacteria and red algae. The spectral characteristics of PE are due to its prosthetic groups, or phycoerythrobilins (PEBs), that are covalently attached to the protein chain by specific bilin lyases. Only two PE lyases have been identified and characterized so far, and the other bilin lyases are unknown. Here, using in silico analyses, markerless deletion, biochemical assays with purified and recombinant proteins, and site-directed mutagenesis, we examined the role of a putative lyase-encoding gene, cpeF, in the cyanobacterium Fremyella diplosiphon. Analyzing the phenotype of the cpeF deletion, we found that cpeF is required for proper PE biogenesis, specifically for ligation of the doubly linked PEB to Cys-48/Cys-59 residues of the CpeB subunit of PE. We also show that in a heterologous host, CpeF can attach PEB to Cys-48/Cys-59 of CpeB, but only in the presence of the chaperone-like protein CpeZ. Additionally, we report that CpeF likely ligates the A ring of PEB to Cys-48 prior to the attachment of the D ring to Cys-59. We conclude that CpeF is the bilin lyase responsible for attachment of the doubly ligated PEB to Cys-48/Cys-59 of CpeB and together with other specific bilin lyases contributes to the post-translational modification and assembly of PE into mature light-harvesting complexes.


Assuntos
Cianobactérias/metabolismo , Ficobilinas/metabolismo , Ficoeritrina/metabolismo , Cianobactérias/química , Ficobilinas/química , Ficoeritrina/química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
2.
Biochemistry ; 52(48): 8663-76, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24215428

RESUMO

Cyanobacterial phycobiliproteins have evolved to capture light energy over most of the visible spectrum due to their bilin chromophores, which are linear tetrapyrroles that have been covalently attached by enzymes called bilin lyases. We report here the crystal structure of a bilin lyase of the CpcS family from Thermosynechococcus elongatus (TeCpcS-III). TeCpcS-III is a 10-stranded ß barrel with two alpha helices and belongs to the lipocalin structural family. TeCpcS-III catalyzes both cognate as well as noncognate bilin attachment to a variety of phycobiliprotein subunits. TeCpcS-III ligates phycocyanobilin, phycoerythrobilin, and phytochromobilin to the alpha and beta subunits of allophycocyanin and to the beta subunit of phycocyanin at the Cys82-equivalent position in all cases. The active form of TeCpcS-III is a dimer, which is consistent with the structure observed in the crystal. With the use of the UnaG protein and its association with bilirubin as a guide, a model for the association between the native substrate, phycocyanobilin, and TeCpcS was produced.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/enzimologia , Liases/química , Ficobiliproteínas/química , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Análise Espectral
3.
Front Allergy ; 4: 1279290, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38093814

RESUMO

Background: Oral immunotherapy (OIT) with peanut (Arachis hypogaea) allergen powder-dnfp (PTAH; Aimmune Therapeutics) is an FDA-approved treatment to desensitize peanut allergic participants. Objective: Here we assessed shifts in IgE and IgG4 binding to peanut allergens and their epitopes recognized by United States (US) peanut allergic participants (n = 20) enrolled in phase 3 PTAH OIT clinical trials. Methods: Pre- and post- trial participant sera were collected approximately 12 months apart and tested for IgE binding to intact peanut proteins via ImmunoCAP ISAC immunoassays. IgE and IgG4 linear epitopes were identified based on binding to synthetic overlapping 15-mer linear peptides of 10 peanut allergens (Ara h 1-11) synthesized on microarray slides. Results: Statistically significant decreases in IgE binding were identified for intact Ara h 2, 3, and 6, and known and newly identified IgE epitopes were shown to exhibit shifts towards IgG4 binding post-OIT, with most linear peptides having increased IgG4 binding after treatment with PTAH. While PTAH does not seem to alter the actual peptide binding patterns significantly after one year of treatment, the IgE and IgG4 binding ratios and intensity are altered. Conclusion: At a population level, the linear IgE and IgG4 epitopes of 10 peanut allergens overlap and that increase in IgG4 with OIT results in displacement of IgE binding to both conformational and linear epitopes. Furthermore, it appears as though the increase in IgG4 is more important to achieve desensitization at the 12-month timepoint than the decrease in IgE. This type of knowledge can be useful in the identification of IgE and IgG4-binding allergen and peptide biomarkers that may indicate desensitization or sustained unresponsiveness of allergic individuals to peanut.

4.
J Biol Chem ; 286(41): 35509-35521, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21865169

RESUMO

When grown in green light, Fremyella diplosiphon strain UTEX 481 produces the red-colored protein phycoerythrin (PE) to maximize photosynthetic light harvesting. PE is composed of two subunits, CpeA and CpeB, which carry two and three phycoerythrobilin (PEB) chromophores, respectively, that are attached to specific Cys residues via thioether linkages. Specific bilin lyases are hypothesized to catalyze each PEB ligation. Using a heterologous, coexpression system in Escherichia coli, the PEB ligation activities of putative lyase subunits CpeY, CpeZ, and CpeS were tested on the CpeA and CpeB subunits from F. diplosiphon. Purified His(6)-tagged CpeA, obtained by coexpressing cpeA, cpeYZ, and the genes for PEB synthesis, had absorbance and fluorescence emission maxima at 566 and 574 nm, respectively. CpeY alone, but not CpeZ, could ligate PEB to CpeA, but the yield of CpeA-PEB was lower than achieved with CpeY and CpeZ together. Studies with site-specific variants of CpeA(C82S and C139S), together with mass spectrometric analysis of trypsin-digested CpeA-PEB, revealed that CpeY/CpeZ attached PEB at Cys(82) of CpeA. The CpeS bilin lyase ligated PEB at both Cys(82) and Cys(139) of CpeA but very inefficiently; the yield of PEB ligated at Cys(82) was much lower than observed with CpeY or CpeY/CpeZ. However, CpeS efficiently attached PEB to Cys(80) of CpeB but neither CpeY, CpeZ, nor CpeY/CpeZ could ligate PEB to CpeB.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/enzimologia , Liases/metabolismo , Ficoeritrina/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cianobactérias/genética , Liases/química , Liases/genética , Ficoeritrina/química , Ficoeritrina/genética
5.
Front Allergy ; 3: 1090114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36698378

RESUMO

Non-specific lipid transfer proteins (LTPs) are well studied allergens that can lead to severe reactions, but often cause oral allergy syndrome in the Mediterranean area and other European countries. However, studies focused on LTP reactivity in allergic individuals from the United States are lacking because they are not considered major allergens. The goal of this study is to determine if differences in immunoglobulin (Ig) E binding patterns to the peanut allergen Ara h 9 and two homologous LTPs (walnut Jug r 3 and peach Pru p 3) between the US and Spain contribute to differences observed in allergic reactivity. Synthetic overlapping 15-amino acid-long peptides offset by five amino acids from Ara h 9, Jug r 3, and Pru p 3 were synthesized, and the intact proteins were attached to microarray slides. Sera from 55 peanut-allergic individuals from the US were tested for IgE binding to the linear peptides and IgE binding to intact proteins using immunofluorescence. For comparison, sera from 17 peanut-allergic individuals from Spain were also tested. Similar IgE binding profiles for Ara h 9, Jug r 3, and Pru p 3 were identified between the US and Spain, with slight differences. Certain regions of the proteins, specifically helices 1 and 2 and the C-terminal coil, were recognized by the majority of the sera more often than other regions of the proteins. While serum IgE from peanut-allergic individuals in the US binds to peptides of Ara h 9 and its homologs, only IgE from the Spanish subjects bound to the intact LTPs. This study identifies Ara h 9, Jug r 3, and Pru p 3 linear epitopes that were previously unidentified using sera from peanut-allergic individuals from the US and Spain. Certain regions of the LTPs are recognized more often in US subjects, indicating that they represent conserved and possible cross-reactive regions. The location of the epitopes in 3D structure models of the LTPs may predict the location of potential conformational epitopes bound by a majority of the Spanish patient sera. These findings are potentially important for development of peptide or protein-targeting diagnostic and therapeutic tools for food allergy.

6.
Biochim Biophys Acta Bioenerg ; 1861(12): 148284, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32777305

RESUMO

Bilin lyases are enzymes which ligate linear tetrapyrrole chromophores to specific cysteine residues on light harvesting proteins present in cyanobacteria and red algae. The lyases responsible for chromophorylating the light harvesting protein phycoerythrin (PE) have not been fully characterized. In this study, we explore the role of CpeT, a putative bilin lyase, in the biosynthesis of PE in the cyanobacterium Fremyella diplosiphon. Recombinant protein studies show that CpeT alone can bind phycoerythrobilin (PEB), but CpeZ, a chaperone-like protein, is needed in order to correctly and efficiently attach PEB to the ß-subunit of PE. MS analyses of the recombinant ß-subunit of PE coexpressed with CpeT and CpeZ show that PEB is attached at Cys-165. Purified phycobilisomes from a cpeT knockout mutant and wild type (WT) samples from F. diplosiphon were analyzed and compared. The cpeT mutant contained much less PE and more phycocyanin than WT cells grown under green light, conditions which should maximize the production of PE. In addition, Northern blot analyses showed that the cpeCDESTR operon mRNAs were upregulated while the cpeBcpeA mRNAs were downregulated in the cpeT mutant strain when compared with WT, suggesting that CpeT may also play a direct or indirect regulatory role in transcription of these operons or their mRNA stability, in addition to its role as a PEB lyase for Cys-165 on ß-PE.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/enzimologia , Cisteína/metabolismo , Liases/metabolismo , Chaperonas Moleculares/metabolismo , Ficobilinas/metabolismo , Ficoeritrina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cianobactérias/genética , Deleção de Genes , Genes Bacterianos , Proteínas Mutantes/metabolismo , Óperon/genética , Peptídeos/química , Fenótipo , Proteínas Recombinantes/metabolismo
7.
Biochim Biophys Acta Bioenerg ; 1860(7): 549-561, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31173730

RESUMO

Phycoerythrin (PE) present in the distal ends of light-harvesting phycobilisome rods in Fremyella diplosiphon (Tolypothrix sp. PCC 7601) contains five phycoerythrobilin (PEB) chromophores attached to six cysteine residues for efficient green light capture for photosynthesis. Chromophore ligation on PE subunits occurs through bilin lyase catalyzed reactions, but the characterization of the roles of all bilin lyases for phycoerythrin is not yet complete. To gain a more complete understanding about the individual functions of CpeZ and CpeY in PE biogenesis in cyanobacteria, we examined PE and phycobilisomes purified from wild type F. diplosiphon, cpeZ and cpeY knockout mutants. We find that the cpeZ and cpeY mutants accumulate less PE than wild type cells. We show that in the cpeZ mutant, chromophorylation of both PE subunits is affected, especially the Cys-80 and Cys-48/Cys-59 sites of CpeB, the beta-subunit of PE. The cpeY mutant showed reduced chromophorylation at Cys-82 of CpeA. We also show that, in vitro, CpeZ stabilizes PE subunits and assists in refolding of CpeB after denaturation. Taken together, we conclude that CpeZ acts as a chaperone-like protein, assisting in the folding/stability of PE subunits, allowing bilin lyases such as CpeY and CpeS to attach PEB to their PE subunit.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Chaperonas Moleculares/metabolismo , Ficoeritrina/biossíntese , Proteínas Recombinantes/metabolismo , Proteínas de Bactérias/genética , Cianobactérias/genética , Cianobactérias/crescimento & desenvolvimento , Mutação , Proteínas Recombinantes/genética
8.
J Mass Spectrom ; 48(2): 187-92, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23378091

RESUMO

Bilin chromophore attachment to phycobiliproteins is an enzyme-catalyzed post-translational modification process. Bilin-lyases attach a bilin chromophore to their cognate protein through a thioether bond between the chromophore and a cysteine moiety. Bilin chromophores are attached to their phycobiliproteins through the 3(1) carbon of the bilin. Double attachment may also occur, and in this case, carbons 3(1) and 18(1) of the bilin are both forming covalent linkages to cysteine moieties. There is a mass spectrometric limitation when examining tryptic peptides containing two (or more) cysteines if one seeks to ascertain whether chromopeptides are singly or doubly attached. The problem is that singly and doubly attached chromopeptides appear at the same m/z value; thus, up until the present, only NMR analysis has been successful at determining whether the chromophore is singly or doubly attached. We report in this work a new, fast and accurate method for discriminating singly from doubly attached chromophores using MALDI-TOF mass spectrometry. This method was developed from mass spectral analysis of chromopeptides that had undergone in vitro or in vivo attachment of bilin chromophores to phycobiliproteins. Distinction is based on a characteristic neutral loss that appears in the MALDI-TOF mass spectrum only when the bilin is singly attached.


Assuntos
Ficobilinas/química , Ficobiliproteínas/química , Ficoeritrina/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Cianobactérias/química , Fragmentos de Peptídeos/química , Tripsina/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa