Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Anat ; 240(1): 120-130, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34346505

RESUMO

The morphology of the rib cage affects both the biomechanics of the upper body's musculoskeletal structure and the respiratory mechanics. This becomes particularly important when evaluating skeletal deformities, as in adolescent idiopathic scoliosis (AIS). The aim of this study was to identify morphological characteristics of the rib cage in relation to the lung in patients with non-deformed and scoliotic spines. Computed tomography data of 40 patients without any visible spinal abnormalities (healthy group) and 21 patients with AIS were obtained retrospectively. All bony structures as well as the right and left lung were reconstructed using image segmentation. Morphological parameters were calculated based on the distances between characteristic morphological landmarks. These parameters included the rib position, length, and area, the rib cage depth and width, and the rib inclination angle on either side, as well as the spinal height and length. Furthermore, we determined the left and right lung volumes, and the area of contact between the rib cage and lung. Differences between healthy and scoliotic spines were statistically analysed using the t-test for unpaired data. The rib cage of the AIS group was significantly deformed in the dorso-ventral and medio-lateral directions. The anatomical proximity of the lung to the ribs was nearly symmetrical in the healthy group. By contrast, within the AIS group, the lung covered a significantly greater area on the left side of the rib cage at large thoracic deformities. Within the levels T1-T6, no significant difference in the rib length, depth to width relationship, or area was observed between the healthy and AIS groups. Inferior to the lung (T7-T12), these parameters exhibited greater variability. The ratio between the width of the rib cage at T6 and the thoracic spinal height (T1-T12) was significantly increased within the thoracic AIS group (1.1 ± 0.08) compared with the healthy group (1.0 ± 0.05). No statistical differences were found between the lung volumes among all the groups. While the rib cage was frequently strongly deformed in the AIS group, the lung and its surrounding ribs appeared to be normally developed. The observed rib hump in AIS appeared to be formed particularly by a more ventral position of the ribs on the concave side. Furthermore, the rib cage width to spinal height ratio suggested that the spinal height of the thoracic AIS-spine is reduced. This indicates that the spine would gain its growth-related height after correcting the spinal deformity. These are the important aspects to consider in the aetiology research and orthopaedic treatment of AIS.


Assuntos
Cifose , Escoliose , Adolescente , Humanos , Pulmão/diagnóstico por imagem , Estudos Retrospectivos , Caixa Torácica/diagnóstico por imagem , Escoliose/diagnóstico por imagem , Vértebras Torácicas/diagnóstico por imagem
2.
Eur Spine J ; 27(9): 2184-2191, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29730723

RESUMO

PURPOSE: Adolescent idiopathic scoliosis (AIS) is a three-dimensional deformity of the spine which exhibits morphological changes during growth. The goal of this study was to identify morphological patterns that could be explained by different loading patterns for AIS. METHODS: Computed tomography data of 21 patients with diagnosed AIS and 48 patients without any visual spinal abnormalities were collected prospectively. The bony structures were reconstructed, and landmarks were placed on characteristic morphological points on the spine. Multiple morphological parameters were calculated based on the distances between the landmarks. The intra- and inter-observer variability for each parameter was estimated. Differences between healthy and scoliotic spines were statistically analysed using the t test for unpaired data, with a significance level of α = 0.01. RESULTS: Within the healthy group, an out-of-plane rotation of the vertebrae in the transverse plane was measured (2.6° ± 4.1° at T2). Relating the length of the spinal curvature to the T1-S1 height of the spine revealed that scoliotic spines were significantly longer. However, the endplate area in the AIS group was significantly smaller once compared to the curvature length. The relation between the left and right pedicle areas varied between 2.5 ± 0.79 and 0.4 ± 0.19, while the ratio of the facet articular surfaces varied within 2.3 ± 0.5 and 0.5 ± 0.2. CONCLUSIONS: This study identified a certain morphological pattern along the spine, which reveals a distinct load path prevalent within AIS. The data suggested that the spine adapts to the asymmetric load conditions and the spine is not deformed by asymmetric growth disturbance. These slides can be retrieved under Electronic Supplementary Material.


Assuntos
Escoliose , Coluna Vertebral , Adolescente , Humanos , Estudos Prospectivos , Amplitude de Movimento Articular/fisiologia , Escoliose/diagnóstico por imagem , Escoliose/fisiopatologia , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/fisiopatologia , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa