Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 97(11): 6761-76, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25242425

RESUMO

Microbial diversity of 3 raw milk samples after 72 h of storage at 4 °C in a bulk tank was analyzed by culture-dependent and -independent methods. The culture-dependent approach was based on the isolation of bacteria on complex and selective media, chemotaxonomic differentiation of isolates, and subsequent identification by 16S rRNA gene sequencing. The culture-independent approach included the treatment of raw milk with the dye propidium monoazide before direct DNA extraction by mechanic and enzymatic cell lysis approaches, and cloning and sequencing of the 16S rRNA genes. The selective detection of viable bacteria improved the comparability between bacterial compositions of raw milk based on culture-dependent and -independent methods, which was the major objective of this study. Several bacterial species of the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria were detected by the culture-dependent method, whereas mainly bacteria of the phylum Proteobacteria as well as low proportions of the phyla Bacteroidetes and Actinobacteria were detected by the culture-independent method. This led to the conclusion that the phylum Firmicutes was strongly discriminated by the culture-independent approach. Generally, species richness detected by the culture-dependent method was higher than that detected by the culture-independent method for all samples. However, few taxa could be detected solely by the direct DNA-based method. In conclusion, the combination of culture-dependent and -independent methods led to the detection of the highest bacterial diversity for the raw milk samples analyzed. It was shown that DNA extraction from raw milk as the essential step in culture-independent methods causes the discrimination of taxa by incomplete cell lysis. Treatment of raw milk with the viability dye propidium monoazide was optimized for the application in raw milk without former removal of milk ingredients and proved to be a suitable tool to ensure comparability of bacterial diversity depicted by both methods.


Assuntos
Azidas/química , Contaminação de Alimentos/análise , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/isolamento & purificação , Leite/microbiologia , Propídio/análogos & derivados , Animais , Clonagem Molecular , Contagem de Colônia Microbiana , DNA Bacteriano/genética , Microbiologia de Alimentos , Bactérias Gram-Positivas/genética , Filogenia , Propídio/química , RNA Ribossômico 16S/genética
2.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37081766

RESUMO

The genus Nitrospira represents the dominant nitrite-oxidizing clade in most wastewater treatment plants (WWTPs) globally, and several Nitrospira strains have been isolated from activated sludge. Using a pre-enrichment strategy with alternating nitrifying and denitrifying conditions, followed by incubation at elevated temperatures, we isolated a novel Nitrospira species, named Nitrospira tepida. This moderately thermophilic species with optimal growth between 37 and 45°C is only distantly related to other Nitrospira and forms a novel lineage VII within the genus, together with few environmental 16S rRNA gene sequences predominantly detected in thermal wastewater or oxygen-limited systems. Genomic and physiological analyses revealed remarkable differences between N. tepida and two other isolates previously obtained from the same WWTP, suggesting niche differentiation between these nitrite oxidizers. N. tepida grows in aggregates, and tolerates nitrite and nitrate concentrations of up to 20 mM and 40 mM, respectively. The Km value for nitrite of N. tepida is 77 ± 26 µM. In summary, this novel Nitrospira lineage seems to be well-adapted for wastewater treatment processes at elevated temperatures and limited aeration, conditions that potentially reduce operational costs of such systems.


Assuntos
Nitritos , Esgotos , RNA Ribossômico 16S/genética , Temperatura , Oxirredução , Bactérias/genética , Nitrificação , Amônia , Filogenia
3.
Environ Microbiol ; 13(9): 2536-47, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21812886

RESUMO

In biofilters of recirculation aquaculture systems (RAS), nitrification by lithoautotrophic microorganisms is essential to prevent the cultivated organisms from intoxication with ammonium and nitrite. In moving-bed biofilters nitrifying microorganisms are immobilized together with heterotrophic bacteria in dense biofilms on carrier elements like plastic beads. Analyses of fatty acid profiles of these biofilms from a marine biofilter revealed a high abundance of Nitrospira-related lipid markers (8-12% of total fatty acids). Further results of a labeling experiment with (13) C-bicarbonate in mineral salts medium with 3 mM nitrite confirmed that Nitrospira is the major autotrophic nitrite oxidizer in the biofilter system. According to 16S rRNA gene sequence analyses the nitrite-oxidizing community in the biofilter consisted of at least two different representatives of Nitrospira, one of which could be successfully isolated. The marine isolate 'Ecomares 2.1' belongs to cluster IVa and showed 98.8% 16S rRNA gene sequence similarity to Nitrospira marina, whereas the enrichment 'M1 marine' is only distantly related (94.0% 16S rRNA gene sequence similarity to N. marina). In laboratory experiments, the isolate exhibited remarkable tolerances against high substrate and product concentrations (30 mM nitrite and 80 mM nitrate) as well as ammonium (50 mM). During the isolation process a strong tendency of this strain to develop biofilms became apparent. Thus, Ecomares 2.1 seems to be well adapted to the attached lifestyle in biofilters and the nitrogenous load prevailing in the effluent waters of RAS. Both members of Nitrospira could be detected by PCR-based methods in environmental samples of marine and brackish RAS biofilters and are therefore considered to be characteristic for these engineered ecosystems.


Assuntos
Aquicultura , Bactérias/metabolismo , Nitrificação , Nitritos/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biofilmes , Meios de Cultura/química , DNA Bacteriano/genética , Ácidos Graxos/análise , Genes de RNAr , Nitratos/metabolismo , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Microbiologia da Água
4.
PLoS One ; 8(5): e64737, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23705006

RESUMO

Lithoautotrophic nitrite-oxidizing bacterial populations from moving-bed biofilters of brackish recirculation aquaculture systems (RAS; shrimp and barramundi) were tested for their metabolic activity and phylogenetic diversity. Samples from the biofilters were labeled with (13)C-bicarbonate and supplemented with nitrite at concentrations of 0.3, 3 and 10 mM, and incubated at 17 and 28°C, respectively. The biofilm material was analyzed by fatty acid methyl ester - stable isotope probing (FAME-SIP). High portions of up to 45% of Nitrospira-related labeled lipid markers were found confirming that Nitrospira is the major autotrophic nitrite oxidizer in these brackish systems with high nitrogen loads. Other nitrite-oxidizing bacteria such as Nitrobacter or Nitrotoga were functionally not relevant in the investigated biofilters. Nitrospira-related 16S rRNA gene sequences were obtained from the samples with 10 mM nitrite and analyzed by a cloning approach. Sequence studies revealed four different phylogenetic clusters within the marine sublineage IV of Nitrospira, though most sequences clustered with the type strain of Nitrospira marina and with a strain isolated from a marine RAS. Three lipids dominated the whole fatty acid profiles of nitrite-oxidizing marine and brackish enrichments of Nitrospira sublineage IV organisms. The membranes included two marker lipids (16∶1 cis7 and 16∶1 cis11) combined with the non-specific acid 16∶0 as major compounds and confirmed these marker lipids as characteristic for sublineage IV species. The predominant labeling of these characteristic fatty acids and the phylogenetic sequence analyses of the marine Nitrospira sublineage IV identified organisms of this sublineage as main autotrophic nitrite-oxidizers in the investigated brackish biofilter systems.


Assuntos
Aquicultura , Reatores Biológicos/microbiologia , Filtração/instrumentação , Variação Genética , Nitrobacter/genética , Reciclagem , Organismos Aquáticos/metabolismo , Ácidos Graxos/metabolismo , Dados de Sequência Molecular , Nitritos/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Coloração e Rotulagem
5.
Syst Appl Microbiol ; 36(7): 517-24, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23921154

RESUMO

Metabolically-active autotrophic nitrite oxidizers from activated sludge were labeled with (13)C-bicarbonate under exposure to different temperatures and nitrite concentrations. The labeled samples were characterized by FAME-SIP (fatty acid methyl ester-stable isotope probing). The compound cis-11-palmitoleic acid, which is the major lipid of the most abundant nitrite oxidizer in activated sludge, Candidatus Nitrospira defluvii, showed (13)C-incorporation in all samples exposed to 3 mM nitrite. Subsequently, the lipid cis-7-palmitoleic acid was labeled, and it indicated the activity of a nitrite oxidizer that was different from the known Nitrospira taxa in activated sludge. The highest incorporation of cis-7-palmitoleic acid label was found after incubation with a nitrite concentration of 0.3 mM at 17 and 22°C. While activity of Nitrobacter populations could not be detected by the FAME-SIP approach, an unknown nitrite oxidizer with the major lipid cis-9 isomer of palmitoleic acid exhibited (13)C-incorporation at 28°C with 30 mM nitrite. These results indicated flexibility of nitrite-oxidizing guilds in a complex community responding to different conditions. Labeled lipids so far not described for activated sludge-associated nitrifiers indicated the presence of unknown nitrite oxidizers in this habitat. The FAME-SIP-based information can be used to define appropriate conditions for the enrichment of nitrite-oxidizing guilds from complex samples.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Ácidos Graxos/análise , Nitritos/metabolismo , Esgotos/microbiologia , Águas Residuárias/microbiologia , Bactérias/química , Bactérias/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ésteres/análise , Marcação por Isótopo , Dados de Sequência Molecular , Oxirredução , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
FEMS Microbiol Ecol ; 75(2): 195-204, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21138449

RESUMO

Geothermal environments are a suitable habitat for nitrifying microorganisms. Conventional and molecular techniques indicated that chemolithoautotrophic nitrite-oxidizing bacteria affiliated with the genus Nitrospira are widespread in environments with elevated temperatures up to 55 °C in Asia, Europe, and Australia. However, until now, no thermophilic pure cultures of Nitrospira were available, and the physiology of these bacteria was mostly uncharacterized. Here, we report on the isolation and characterization of a novel thermophilic Nitrospira strain from a microbial mat of the terrestrial geothermal spring Gorjachinsk (pH 8.6; temperature 48 °C) from the Baikal rift zone (Russia). Based on phenotypic properties, chemotaxonomic data, and 16S rRNA gene phylogeny, the isolate was assigned to the genus Nitrospira as a representative of a novel species, for which the name Nitrospira calida is proposed. A highly similar 16S rRNA gene sequence (99.6% similarity) was detected in a Garga spring enrichment grown at 46 °C, whereas three further thermophilic Nitrospira enrichments from the Garga spring and from a Kamchatka Peninsula (Russia) terrestrial hot spring could be clearly distinguished from N. calida (93.6-96.1% 16S rRNA gene sequence similarity). The findings confirmed that Nitrospira drive nitrite oxidation in moderate thermophilic habitats and also indicated an unexpected diversity of heat-adapted Nitrospira in geothermal hot springs.


Assuntos
Bactérias Gram-Negativas Quimiolitotróficas/isolamento & purificação , Fontes Termais/microbiologia , Nitritos/metabolismo , DNA Bacteriano/genética , Bactérias Gram-Negativas Quimiolitotróficas/classificação , Bactérias Gram-Negativas Quimiolitotróficas/genética , Bactérias Gram-Negativas Quimiolitotróficas/metabolismo , Temperatura Alta , Nitrificação , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Federação Russa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa