Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(7): 100795, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38848995

RESUMO

At the molecular scale, adaptive advantages during plant growth and development rely on modulation of gene expression, primarily provided by epigenetic machinery. One crucial part of this machinery is histone posttranslational modifications, which form a flexible system, driving transient changes in chromatin, and defining particular epigenetic states. Posttranslational modifications work in concert with replication-independent histone variants further adapted for transcriptional regulation and chromatin repair. However, little is known about how such complex regulatory pathways are orchestrated and interconnected in cells. In this work, we demonstrate the utility of mass spectrometry-based approaches to explore how different epigenetic layers interact in Arabidopsis mutants lacking certain histone chaperones. We show that defects in histone chaperone function (e.g., chromatin assembly factor-1 or nucleosome assembly protein 1 mutations) translate into an altered epigenetic landscape, which aids the plant in mitigating internal instability. We observe changes in both the levels and distribution of H2A.W.7, altogether with partial repurposing of H3.3 and changes in the key repressive (H3K27me1/2) or euchromatic marks (H3K36me1/2). These shifts in the epigenetic profile serve as a compensatory mechanism in response to impaired integration of the H3.1 histone in the fas1 mutants. Altogether, our findings suggest that maintaining genome stability involves a two-tiered approach. The first relies on flexible adjustments in histone marks, while the second level requires the assistance of chaperones for histone variant replacement.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Epigênese Genética , Chaperonas de Histonas , Histonas , Arabidopsis/genética , Arabidopsis/metabolismo , Histonas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/genética , Mutação , Processamento de Proteína Pós-Traducional , Regulação da Expressão Gênica de Plantas , Fator 1 de Modelagem da Cromatina/metabolismo , Fator 1 de Modelagem da Cromatina/genética
2.
J Proteome Res ; 22(10): 3311-3319, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37699853

RESUMO

Dental calculus is becoming a crucial material in the study of past populations with increasing interest in its proteomic and genomic content. Here, we suggest further development of a protocol for analysis of ancient proteins and a combined approach for subsequent ancient DNA extraction. We tested the protocol on recent teeth, and the optimized protocol was applied to ancient tooth to limit the destruction of calculus as it is a precious and irreplaceable source of dietary, microbiological, and ecological information in the archeological context. Finally, the applicability of the protocol was demonstrated on samples of the ancient calculus.

3.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139176

RESUMO

The success of bottom-up proteomic analysis frequently depends on the efficient removal of contaminants from protein or peptide samples before LC-MS/MS. For a peptide clean-up workflow, single-pot solid-phase-enhanced peptide sample preparation on carboxylate-modified paramagnetic beads (termed SP2) was evaluated for sodium dodecyl sulfate or polyethylene glycol removal from Arabidopsis thaliana tryptic peptides. The robust and efficient 40-min SP2 protocol, tested for 10-ng, 250-ng, and 10-µg peptide samples, was proposed and benchmarked thoroughly against the ethyl acetate extraction protocol. The SP2 protocol on carboxylated magnetic beads proved to be the most robust approach, even for the simultaneous removal of massive sodium dodecyl sulfate (SDS) and polyethylene glycol (PEG) contaminations from AT peptide samples in respect of the LC-MS/MS data outperforming ethyl acetate extraction.


Assuntos
Espectrometria de Massa com Cromatografia Líquida , Polietilenoglicóis , Dodecilsulfato de Sódio , Cromatografia Líquida/métodos , Proteômica/métodos , Benchmarking , Espectrometria de Massas em Tandem/métodos , Peptídeos/análise
4.
Front Oncol ; 13: 1140738, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007105

RESUMO

CD9 is a crucial regulator of cell adhesion in the immune system and plays important physiological roles in hematopoiesis, blood coagulation or viral and bacterial infections. It is involved in the transendothelial migration of leukocytes which might also be hijacked by cancer cells during their invasion and metastasis. CD9 is found at the cell surface and the membrane of exosomes affecting cancer progression and therapy resistance. High expression of CD9 is mostly associated with good patients outcome, with a few exceptions. Discordant findings have been reported for breast, ovarian, melanoma, pancreatic and esophageal cancer, which might be related to using different antibodies or inherent cancer heterogeneity. According to in vitro and in vivo studies, tetraspanin CD9 is not clearly associated with either tumor suppression or promotion. Further mechanistic experiments will elucidate the role of CD9 in particular cancer types and specific conditions.

5.
Plants (Basel) ; 12(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38140504

RESUMO

The ability for plant regeneration from dedifferentiated cells opens up the possibility for molecular bioengineering to produce crops with desirable traits. Developmental and environmental signals that control cell totipotency are regulated by gene expression via dynamic chromatin remodeling. Using a mass spectrometry-based approach, we investigated epigenetic changes to the histone proteins during callus formation from roots and shoots of Arabidopsis thaliana seedlings. Increased levels of the histone H3.3 variant were found to be the major and most prominent feature of 20-day calli, associated with chromatin relaxation. The methylation status in root- and shoot-derived calli reached the same level during long-term propagation, whereas differences in acetylation levels provided a long-lasting imprint of root and shoot origin. On the other hand, epigenetic signs of origin completely disappeared during 20 days of calli propagation in the presence of histone deacetylase inhibitors (HDACi), sodium butyrate, and trichostatin A. Each HDACi affected the state of post-translational histone modifications in a specific manner; NaB-treated calli were epigenetically more similar to root-derived calli, and TSA-treated calli resembled shoot-derived calli.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa