Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Nature ; 588(7836): 124-129, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33268865

RESUMO

Ageing is a degenerative process that leads to tissue dysfunction and death. A proposed cause of ageing is the accumulation of epigenetic noise that disrupts gene expression patterns, leading to decreases in tissue function and regenerative capacity1-3. Changes to DNA methylation patterns over time form the basis of ageing clocks4, but whether older individuals retain the information needed to restore these patterns-and, if so, whether this could improve tissue function-is not known. Over time, the central nervous system (CNS) loses function and regenerative capacity5-7. Using the eye as a model CNS tissue, here we show that ectopic expression of Oct4 (also known as Pou5f1), Sox2 and Klf4 genes (OSK) in mouse retinal ganglion cells restores youthful DNA methylation patterns and transcriptomes, promotes axon regeneration after injury, and reverses vision loss in a mouse model of glaucoma and in aged mice. The beneficial effects of OSK-induced reprogramming in axon regeneration and vision require the DNA demethylases TET1 and TET2. These data indicate that mammalian tissues retain a record of youthful epigenetic information-encoded in part by DNA methylation-that can be accessed to improve tissue function and promote regeneration in vivo.


Assuntos
Envelhecimento/genética , Reprogramação Celular/genética , Metilação de DNA , Epigênese Genética , Olho , Regeneração Nervosa/genética , Visão Ocular/genética , Visão Ocular/fisiologia , Envelhecimento/fisiologia , Animais , Axônios/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular , Proteínas de Ligação a DNA/genética , Dependovirus/genética , Dioxigenases , Modelos Animais de Doenças , Olho/citologia , Olho/inervação , Olho/patologia , Feminino , Vetores Genéticos/genética , Glaucoma/genética , Glaucoma/patologia , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Endogâmicos C57BL , Fator 3 de Transcrição de Octâmero/genética , Traumatismos do Nervo Óptico/genética , Proteínas Proto-Oncogênicas/genética , Células Ganglionares da Retina/citologia , Fatores de Transcrição SOXB1/genética , Transcriptoma/genética
2.
J Neuroophthalmol ; 44(1): 16-21, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938114

RESUMO

BACKGROUND: In 2005, we reported 3 patients with bilateral optic nerve damage early in life. These patients had stable vision for decades but then experienced significant bilateral vision loss with no obvious cause. Our hypothesis, novel at that time, was that the late decline of vision was due to age-related attrition of retinal ganglion cells superimposed on a reduced neuronal population due to the earlier injury. EVIDENCE ACQUISITION: The field of epigenetics provides a new paradigm with which to consider the normal aging process and the impact of neuronal injury, which has been shown to accelerate aging. Late-in-life decline in function after early neuronal injury occurs in multiple sclerosis due to dysregulated inflammation and postpolio syndrome. Recent studies by our group in mice have also demonstrated the possibility of partial reversal of cellular aging and the potential to mitigate anatomical damage after injury and even improve visual function. RESULTS: The results in mice and nonhuman primates published elsewhere have shown enhanced neuronal survival and visual function after partial epigenetic reprogramming. CONCLUSIONS: Injury promotes epigenetic aging , and this finding can be observed in several clinically relevant scenarios. An understanding of the epigenetic mechanisms at play opens the opportunity to restore function in the nervous system and elsewhere with cellular rejuvenation therapies. Our earlier cases exemplify how reconsideration of previously established concepts can motivate inquiry of new paradigms.


Assuntos
Esclerose Múltipla , Doenças do Nervo Óptico , Humanos , Camundongos , Animais , Doenças do Nervo Óptico/genética , Nervo Óptico , Células Ganglionares da Retina , Envelhecimento/genética , Transtornos da Visão/genética , Cegueira
3.
Int J Mol Sci ; 25(17)2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39273646

RESUMO

Corneal transparency and avascularity are essential for vision. The avascular cornea transitions into the vascularized conjunctiva at the limbus. Here, we explore a limbal stromal cell sub-population that expresses ABCB5 and has mesenchymal stem cell characteristics. Human primary corneal stromal cells were enriched for ABCB5 by using FACS sorting. ABCB5+ cells expressed the MSC markers CD90, CD73, and CD105. ABCB5+ but not ABCB5- cells from the same donor displayed evidence of pluripotency with a significantly higher colony-forming efficiency and the ability of trilineage differentiation (osteogenic, adipogenic, and chondrogenic). The ABCB5+ cell secretome demonstrated lower levels of the pro-inflammatory protein MIF (macrophage migration inhibitory factor) as well as of the pro-(lymph)angiogenic growth factors VEGFA and VEGFC, which correlated with reduced proliferation of Jurkat cells co-cultured with ABCB5+ cells and decreased proliferation of blood and lymphatic endothelial cells cultured in ABCB5+ cell-conditioned media. These data support the hypothesis that ABCB5+ limbal stromal cells are a putative MSC population with potential anti-inflammatory and anti-(lymph)angiogenic effects. The therapeutic modulation of ABCB5+ limbal stromal cells may prevent cornea neovascularization and inflammation and, if transplanted to other sites in the body, provide similar protective properties to other tissues.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Células-Tronco Mesenquimais , Fator A de Crescimento do Endotélio Vascular , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Diferenciação Celular , Fator C de Crescimento do Endotélio Vascular/metabolismo , Proliferação de Células , Limbo da Córnea/metabolismo , Limbo da Córnea/citologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Células Jurkat , Células Cultivadas , Células Estromais/metabolismo , Técnicas de Cocultura , Células Endoteliais/metabolismo
4.
Immun Ageing ; 20(1): 53, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838654

RESUMO

BACKGROUND: Increased age is a risk factor for the development and progression of retinal diseases including age-related macular degeneration (AMD). Understanding the changes that occur in the eye due to aging is important in enhancing our understanding of AMD pathogenesis and the development of novel AMD therapies. Microglia, the resident brain and retinal immune cells are associated with both maintaining homeostasis and protection of neurons and loss of microglia homeostasis could be a significant player in age related neurodegeneration. One important characteristic of retinal aging is the migration of microglia from the inner to outer retina where they reside in the subretinal space (SRS) in contact with the retinal pigment epithelial (RPE) cells. The role of aged subretinal microglia is unknown. Here, we depleted microglia in aged C57/BL6 mice fed for 6 weeks with a chow containing PLX5622, a small molecule inhibitor of colony-stimulating factor-1 receptor (Csf1r) required for microglial survival. RESULTS: The subretinal P2RY12 + microglia in aged mice displayed a highly amoeboid and activated morphology and were filled with autofluorescence droplets reminiscent of lipofuscin. TEM indicates that subretinal microglia actively phagocytize shed photoreceptor outer segments, one of the main functions of retinal pigmented epithelial cells. PLX5622 treatment depleted up to 90% of the retinal microglia and was associated with significant loss in visual function. Mice on the microglia depletion diet showed reduced contrast sensitivity and significantly lower electroretinogram for the c-wave, a measurement of RPE functionality, compared to age-matched controls. The loss of c-wave coincided with a loss of RPE cells and increased RPE swelling in the absence of microglia. CONCLUSIONS: We conclude that microglia preserve visual function in aged mice and support RPE cell function, by phagocytosing shed photoreceptor outer segments and lipids, therefore compensating for the known age-related decline of RPE phagocytosis.

5.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769164

RESUMO

Epigenetic DNA modification by 5-hydroxymethylcytosine (5hmC), generated by the Ten-eleven translocation (TET) dioxygenases, regulates diverse biological functions in many organ tissues, including the mammalian eye. For example, 5hmC has been shown to be involved in epigenetic regulation of retinal gene expression. However, a functional role of 5hmC in corneal differentiation has not been investigated to date. Here, we examined 5hmC and TET function in the human cornea. We found 5hmC highly expressed in MUC16-positive terminally differentiated cells that also co-expressed the 5hmC-generating enzyme TET2. TET2 knockdown (KD) in cultured corneal epithelial cells led to significant reductions of 5hmC peak distributions and resulted in transcriptional repression of molecular pathways involved in corneal differentiation, as evidenced by downregulation of MUC4, MUC16, and Keratin 12. Additionally, integrated TET2 KD RNA-seq and genome-wide Reduced Representation Hydroxymethylation Profiling revealed novel epigenetically regulated genes expressed by terminally differentiated cells, including KRT78, MYEOV, and MAL. In aggregate, our findings reveal a novel function of TET2 in the epigenetic regulation of corneal epithelial gene expression and identify novel TET2-controlled genes expressed in differentiated corneal epithelial cells. These results point to potential roles for TET2 induction strategies to enhance treatment of corneal diseases associated with abnormal epithelial maturation.


Assuntos
Dioxigenases , Epigênese Genética , Humanos , 5-Metilcitosina/metabolismo , Diferenciação Celular/genética , Córnea/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Mamíferos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(20): 9989-9998, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31023885

RESUMO

Autoimmune uveitis is a sight-threatening ocular inflammatory condition in which the retina and uveal tissues become a target of autoreactive immune cells. While microglia have been studied extensively in autoimmune uveitis, their exact function remains uncertain. The objective of the current study was to determine whether resident microglia are necessary and sufficient to initiate and amplify retinal inflammation in autoimmune uveitis. In this study, we clearly demonstrate that microglia are essential for initiating infiltration of immune cells utilizing a murine model of experimental autoimmune uveoretinitis (EAU) and the recently identified microglia-specific marker P2ry12. Initiating disease is the primary function of microglia in EAU, since eliminating microglia during the later stages of EAU had little effect, indicating that the function of circulating leukocytes is to amplify and sustain destructive inflammation once microglia have triggered disease. In the absence of microglia, uveitis does not develop, since leukocytes cannot gain entry through the blood-retinal barrier, illustrating that microglia play a critical role in regulating infiltration of inflammatory cells into the retina.


Assuntos
Doenças Autoimunes/etiologia , Microglia/fisiologia , Doenças Retinianas/imunologia , Uveíte/imunologia , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Compostos Orgânicos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores
7.
Mol Cell ; 49(1): 94-108, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23177739

RESUMO

Activating mutations in GNAQ and GNA11, encoding members of the Gα(q) family of G protein α subunits, are the driver oncogenes in uveal melanoma, and mutations in Gq-linked G protein-coupled receptors have been identified recently in numerous human malignancies. How Gα(q) and its coupled receptors transduce mitogenic signals is still unclear because of the complexity of signaling events perturbed upon Gq activation. Using a synthetic-biology approach and a genome-wide RNAi screen, we found that a highly conserved guanine nucleotide exchange factor, Trio, is essential for activating Rho- and Rac-regulated signaling pathways acting on JNK and p38, and thereby transducing proliferative signals from Gα(q) to the nucleus independently of phospholipase C-ß. Indeed, whereas many biological responses elicited by Gq depend on the transient activation of second-messenger systems, Gq utilizes a hard-wired protein-protein-interaction-based signaling circuitry to achieve the sustained stimulation of proliferative pathways, thereby controlling normal and aberrant cell growth.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/fisiologia , Mitose , Proteínas Serina-Treonina Quinases/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Clozapina/análogos & derivados , Clozapina/farmacologia , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ativação Enzimática , Feminino , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Técnicas de Silenciamento de Genes , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Camundongos , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mitógenos/farmacologia , Células NIH 3T3 , Transplante de Neoplasias , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Receptores Acoplados a Proteínas G/genética
8.
Proc Natl Acad Sci U S A ; 115(27): E6264-E6273, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915052

RESUMO

Retinal detachment (RD) is a sight-threatening complication common in many highly prevalent retinal disorders. RD rapidly leads to photoreceptor cell death beginning within 12 h following detachment. In patients with sustained RD, progressive visual decline due to photoreceptor cell death is common, leading to significant and permanent loss of vision. Microglia are the resident immune cells of the central nervous system, including the retina, and function in the homeostatic maintenance of the neuro-retinal microenvironment. It is known that microglia become activated and change their morphology in retinal diseases. However, the function of activated microglia in RD is incompletely understood, in part because of the lack of microglia-specific markers. Here, using the newly identified microglia marker P2ry12 and microglial depletion strategies, we demonstrate that retinal microglia are rapidly activated in response to RD and migrate into the injured area within 24 h post-RD, where they closely associate with infiltrating macrophages, a population distinct from microglia. Once in the injured photoreceptor layer, activated microglia can be observed to contain autofluorescence within their cell bodies, suggesting they function to phagocytose injured or dying photoreceptors. Depletion of retinal microglia results in increased disease severity and inhibition of macrophage infiltration, suggesting that microglia are involved in regulating neuroinflammation in the retina. Our work identifies that microglia mediate photoreceptor survival in RD and suggests that this effect may be due to microglial regulation of immune cells and photoreceptor phagocytosis.


Assuntos
Macrófagos/imunologia , Microglia/imunologia , Células Fotorreceptoras de Vertebrados/imunologia , Receptores Purinérgicos P2Y12/imunologia , Descolamento Retiniano/imunologia , Animais , Morte Celular/genética , Morte Celular/imunologia , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Microglia/patologia , Células Fotorreceptoras de Vertebrados/patologia , Receptores Purinérgicos P2Y12/genética , Descolamento Retiniano/genética , Descolamento Retiniano/patologia
9.
Nature ; 511(7509): 353-7, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25030174

RESUMO

Corneal epithelial homeostasis and regeneration are sustained by limbal stem cells (LSCs), and LSC deficiency is a major cause of blindness worldwide. Transplantation is often the only therapeutic option available to patients with LSC deficiency. However, while transplant success depends foremost on LSC frequency within grafts, a gene allowing for prospective LSC enrichment has not been identified so far. Here we show that ATP-binding cassette, sub-family B, member 5 (ABCB5) marks LSCs and is required for LSC maintenance, corneal development and repair. Furthermore, we demonstrate that prospectively isolated human or murine ABCB5-positive LSCs possess the exclusive capacity to fully restore the cornea upon grafting to LSC-deficient mice in xenogeneic or syngeneic transplantation models. ABCB5 is preferentially expressed on label-retaining LSCs in mice and p63α-positive LSCs in humans. Consistent with these findings, ABCB5-positive LSC frequency is reduced in LSC-deficient patients. Abcb5 loss of function in Abcb5 knockout mice causes depletion of quiescent LSCs due to enhanced proliferation and apoptosis, and results in defective corneal differentiation and wound healing. Our results from gene knockout studies, LSC tracing and transplantation models, as well as phenotypic and functional analyses of human biopsy specimens, provide converging lines of evidence that ABCB5 identifies mammalian LSCs. Identification and prospective isolation of molecularly defined LSCs with essential functions in corneal development and repair has important implications for the treatment of corneal disease, particularly corneal blindness due to LSC deficiency.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Limbo da Córnea/citologia , Limbo da Córnea/fisiologia , Regeneração , Células-Tronco/metabolismo , Cicatrização , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/deficiência , Transportadores de Cassetes de Ligação de ATP/deficiência , Animais , Apoptose , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Transplante de Células-Tronco , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
10.
Exp Eye Res ; 179: 47-54, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30365944

RESUMO

Neutrophil-mediated inflammation plays a critical role in corneal damage following injury or infection. Previous studies demonstrated that membrane-bound FasL (mFasL) induces neutrophil chemokine production. However, the extracellular domain of mFasL is normally cleaved by matrix metalloproteinases to release a soluble form of FasL (sFasL) and sFasL antagonizes mFasL-mediated chemokine production. Therefore, we hypothesized that sFasL could be used to prevent neutrophil-mediated corneal inflammation associated with injury and bacterial keratitis. To test this hypothesis, GFP-only, sFasL-GFP, or mFasL-GFP were expressed in the corneal stroma of C57BL/6 mice, using intra-stromal injections of plasmid DNA or adenoviral vectors (AV) and the role of mFasL and sFasL in corneal inflammation was examined in models of corneal injury and LPS-induced keratitis. Our work addresses an important area of disagreement in the field of FasL, with regard to the mechanism by which sFasL regulates ocular inflammation. Herein, we demonstrate that an intrastromal injection of GFP-only, sFasL-GFP, or mFasL-GFP plasmid DNA resulted in GFP expression throughout the corneal stroma for up to two weeks with little to no evidence of inflammation in the GFP-only and sFasL-GFP groups and mild corneal inflammation in the mFasL-GFP group. Similarly, following epithelial debridement, corneas expressing GFP-only or sFasL-GFP showed no significant signs of corneal inflammation, with clear corneas at 15 days post debridement. By contrast, epithelial debridement of corneas expressing mFasL-GFP triggered persistent corneal inflammation and the development of central corneal opacities that was blocked by sFasL. Similar to the mFasL-GFP plasmid DNA, intrastromal injection of mFasL-GFP AV triggered mild corneal inflammation, but it was transient and resolved by day 10 with corneas remaining clear out to 30 days post injection. Nevertheless, intrastromal expression of mFasL-GFP AV exacerbated LPS-induced keratitis, corneal opacity, and neovascularization, while sFasL-GFP AV expression prevented LPS-induced keratitis, resulting in a clear cornea. Histological analysis of corneas with LPS-induced keratitis revealed a robust infiltration of macrophages and neutrophils and sFasL expression specifically blocked the neutrophil influx. Overall, our data demonstrate that stromal expression of mFasL is inflammatory, while sFasL is non-inflammatory, and opposes the effects of mFasL in mouse models of epithelial debridement and LPS-induced keratitis. These data demonstrate that a delicate balance between sFasL and mFasL regulates ocular inflammation. This study further identifies sFasL as a potent inhibitor of neutrophil-mediated corneal damage, and supports the potential use of sFasL in the treatment of neutrophil-mediated keratitis. These results strongly support the hypothesis that, in the immune privileged environment of the eye, the isoform of FasL regulates immune privilege and determines the extent of inflammation: mFasL promotes inflammation and sFasL blocks inflammation.


Assuntos
Desbridamento , Modelos Animais de Doenças , Epitélio Corneano/cirurgia , Proteína Ligante Fas/fisiologia , Ceratite/prevenção & controle , Adenoviridae/genética , Animais , Western Blotting , Neovascularização da Córnea/etiologia , Neovascularização da Córnea/prevenção & controle , Substância Própria/metabolismo , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Regulação da Expressão Gênica/fisiologia , Vetores Genéticos , Proteínas de Fluorescência Verde/metabolismo , Ceratite/etiologia , Ceratite/patologia , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos/genética
11.
J Immunol ; 197(12): 4626-4638, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27849168

RESUMO

Glaucoma is a multifactorial disease resulting in the death of retinal ganglion cells (RGCs) and irreversible blindness. Glaucoma-associated RGC death depends on the proapoptotic and proinflammatory activity of membrane-bound Fas ligand (mFasL). In contrast to mFasL, the natural cleavage product, soluble Fas ligand (sFasL) inhibits mFasL-mediated apoptosis and inflammation and, therefore, is an mFasL antagonist. DBA/2J mice spontaneously develop glaucoma and, predictably, RGC destruction is exacerbated by expression of a mutated membrane-only FasL gene that lacks the extracellular cleavage site. Remarkably, one-time intraocular adeno-associated virus-mediated gene delivery of sFasL provides complete and sustained neuroprotection in the chronic DBA/2J and acute microbead-induced models of glaucoma, even in the presence of elevated intraocular pressure. This protection correlated with inhibition of glial activation, reduced production of TNF-α, and decreased apoptosis of RGCs and loss of axons. These data indicate that cleavage of FasL under homeostatic conditions, and the ensuing release of sFasL, normally limits the neurodestructive activity of FasL. The data further support the notion that sFasL, and not mFasL, contributes to the immune-privileged status of the eye.


Assuntos
Proteína Ligante Fas/metabolismo , Terapia Genética , Glaucoma/terapia , Neuroproteção , Células Ganglionares da Retina/fisiologia , Doença Aguda , Animais , Apoptose , Células Cultivadas , Doença Crônica , Dependovirus/genética , Modelos Animais de Doenças , Proteína Ligante Fas/genética , Feminino , Glaucoma/genética , Glaucoma/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Fator de Necrose Tumoral alfa/metabolismo
13.
Res Sq ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38766158

RESUMO

Neovascular age-related macular degeneration (AMD), results from choroidal neovascularization (CNV), retinal edema and loss of photoreceptors. Previous studies suggested that Fas Ligand (FasL) on retinal pigment epithelial cells inhibited CNV by inducing apoptosis of infiltrating Fas+ vascular endothelial cells. However, induction of apoptosis depends on membrane-bound (mFasL) while the FasL cleavage product (sFasL) is neuroprotective. To better understand how FasL regulates the development of CNV, we used a mouse model of laser CNV to evaluate the development of CNV in mice with a FasL cleavage site mutation (ΔCS) and can only express the membrane-bound form of FasL. There was no significant difference in CNV size and area of vascular leakage in homozygous FasLΔCS/ΔCS mice when compared to wild type mice. Unexpectedly, heterozygous FasLΔCS/WT mice developed significantly less vascular leakage and showed accelerated neovessel maturation. However, CNV was not prevented in heterozygous FasLΔCS/WT mice if the Fas receptor was deleted in myeloid cells (FasLΔCS/+ Fasflox/flox CreLysM). Thus, FasL-mediated CNV inhibition depends on the extent of FasL cleavage, and on FasL engagement of Fas+ myeloid cells. Moreover, accelerated neovessel maturation prevents vascular leakage in AMD.

14.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585800

RESUMO

Autoimmune uveitis is a major cause of blindness in the working-age population of developed countries. Experimental autoimmune uveitis (EAU) depends on activation of interphotoreceptor retinoid-binding protein (IRBP) specific CD4 + effector T cells that migrate systemically and infiltrate into the retina. Following systemic induction of retinal antigen-specific T cells, the development of EAU can be broken down into three phases: early phase when inflammatory cells begin to infiltrate the retina, amplification phase, and peak phase. Although studied extensively, the function of local antigen-presenting cells (APCs) within the retina remains unclear. Two potential types of APCs are present during uveitis, resident microglia and infiltrating CD11c + dendritic cells (DCs). MHC class II (MHC II) is expressed within the retina on both CD11c + DCs and microglia during the amplification phase of EAU. Therefore, we used microglia specific (P2RY12 and TMEM119) and CD11c + DC specific MHC II knockout mice to study the function of APCs within the retina using the conventional and adoptive transfer methods of inducing EAU. Microglia were essential during all phases of EAU development: the early phase when microglia were MHC Il negative, and amplification and peak phases when microglia were MHC II positive. Unexpectedly, retinal infiltrating MHC Il + CD11c + DCs were present within the retina but their antigen-presenting function was not required for all phases of uveitis. Our data indicate microglia are the critical APCs within the retina and an important therapeutic target that can prevent and/or diminish uveitis even in the presence of circulating IRBP-specific CD4 + effector T cells.

15.
Invest Ophthalmol Vis Sci ; 65(8): 37, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39042403

RESUMO

Purpose: Cell lines are being used in preclinical uveal melanoma (UM) research. Because not all cell lines harbor typical GNAQ or GNA11 hotspot mutations, we aimed at better classifying them and determining whether we could find genetic causes to explain the protein and mRNA expression profiles of the cell lines. Methods: We studied protein and mRNA expression of 14 UM cell lines and determined the presence of single nucleotide variants and small insertions and deletions with next-generation sequencing and copy number alterations with a single nucleotide polymorphism array. The lists of differentially expressed proteins and genes were merged, and shared lists were created, keeping only terms with concordant mRNA and protein expression. Enrichment analyses were performed on the shared lists. Results: Cell lines Mel285 and Mel290 are separate from GNA-mutated cell lines and show downregulation of melanosome-related markers. Both lack typical UM mutations but each harbors four putatively deleterious variants in CTNNB1, PPP1R10, LIMCH1, and APC in Mel285 and ARID1A, PPP1R10, SPG11, and RNF43 in Mel290. The upregulated terms in Mel285 and Mel290 did not point to a convincing alternative origin. Mel285 shows loss of chromosomes 1p, 3p, partial 3q, 6, and partial 8p, whereas Mel290 shows loss of 1p and 6. Expression in the other 12 cell lines was related to BAP1 expression. Conclusions: Although Mel285 and Mel290 have copy number alterations that fit UM, multi-omics analyses show that they belong to a separate group compared to the other analyzed UM cell lines. Therefore, they may not be representative models to test potential therapeutic targets for UM.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Subunidades alfa de Proteínas de Ligação ao GTP , Regulação Neoplásica da Expressão Gênica , Melanoma , Mutação , RNA Mensageiro , Proteínas Supressoras de Tumor , Ubiquitina Tiolesterase , Neoplasias Uveais , Neoplasias Uveais/genética , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologia , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Humanos , Ubiquitina Tiolesterase/genética , RNA Mensageiro/genética , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Proteínas Supressoras de Tumor/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Polimorfismo de Nucleotídeo Único , Análise Mutacional de DNA
16.
Clin Cancer Res ; 30(15): 3243-3258, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38767611

RESUMO

PURPOSE: Uveal melanoma (UM) is the most common intraocular malignant tumor. Despite successful treatment of the primary tumor, about 50% of patients will recur with systemic diseases for which there are no effective treatment strategies. Here we investigated the preclinical efficacy of a chimeric antigen receptor (CAR) T-cell-based immunotherapy targeting B7-H3. EXPERIMENTAL DESIGN: B7-H3 expression on primary and metastatic human UM samples and cell lines was assessed by RNA sequencing, flow cytometry, and immunohistochemistry. Antitumor activity of CAR T cells targeting B7-H3 was tested in vitro with UM cell lines, patient-derived organotypic tumor spheroids from patients with metastatic UM, and in immunodeficient and humanized murine models. RESULTS: B7-H3 is expressed at high levels in >95% UM tumor cells in vitro and in vivo. We generated a B7-H3 CAR with an inducible caspase-9 (iCas9) suicide gene controlled by the chemical inducer of dimerization AP1903, which effectively kills UM cells in vitro and eradicates UM liver metastases in murine models. Delivery of iCas9.B7-H3 CAR T cells in experimental models of UM liver metastases demonstrates a durable antitumor response, even upon tumor rechallenge or in the presence of a significant metastatic disease burden. We demonstrate effective iCas9.B7-H3 CAR T-cell elimination in vitro and in vivo in response to AP1903. Our studies demonstrate more effective tumor suppression with iCas9.B7-H3 CAR T cells as compared to a B7-H3-targeted humanized monoclonal antibody. CONCLUSIONS: These studies support a phase I clinical trial with iCas9.B7-H3 CAR T cells to treat patients with metastatic UM.


Assuntos
Antígenos B7 , Caspase 9 , Genes Transgênicos Suicidas , Imunoterapia Adotiva , Neoplasias Hepáticas , Melanoma , Receptores de Antígenos Quiméricos , Neoplasias Uveais , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Neoplasias Uveais/terapia , Neoplasias Uveais/genética , Neoplasias Uveais/patologia , Neoplasias Uveais/imunologia , Animais , Antígenos B7/genética , Camundongos , Melanoma/terapia , Melanoma/imunologia , Melanoma/genética , Melanoma/patologia , Melanoma/secundário , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Caspase 9/genética , Caspase 9/metabolismo , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos , Linfócitos T/imunologia , Linfócitos T/metabolismo
17.
Infect Immun ; 81(6): 2217-25, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23569113

RESUMO

FasL was recently shown be required for bacterial clearance in C57BL/6 mice that express the FasL.1 allotype. The FasL.2 allotype is expressed in BALB/c mice and exhibits increased binding affinity to and increased cytotoxic activity against Fas(+) target cells. Therefore, we hypothesized that BALB/c mice would be more resistant to Staphylococcus aureus-induced endophthalmitis. To test this hypothesis, C57BL/6, BALB/c, and BALB(gld) mice received intravitreal injections of 2,500 CFU of S. aureus (RN6390). Clinical examinations, electroretinography (ERG), histology, and bacterial quantification were performed at 24, 48, 72, and 96 h postinjection. The myeloperoxidase (MPO) assay was used to quantitate neutrophil infiltration. At 96 h postinfection, 86% of C57BL/6 mice presented with complete destruction of the eye, compared to only 29% of BALB/c mice with complete destruction. To our surprise, in the absence of Fas ligand, BALB(gld) mice showed no difference in bacterial clearance compared to BALB/c mice. However, histology and ERG analysis revealed increased retinal damage and significant loss of retinal function. MPO analysis revealed equal numbers of neutrophils in BALB(gld) and BALB/c mice at 24 h postinfection. However, at 48 h, the neutrophil numbers remained significantly elevated in BALB(gld) mice, correlating with the increased retinal damage observed in BALB(gld) mice. We conclude that the increased resistance to S. aureus induced endophthalmitis in BALB/c mice is not dependent upon the FasL. However, in contrast to C57BL/6 mice, FasL is required for resolution of inflammation and protecting host tissue from nonspecific damage in BALB/c mice.


Assuntos
Endoftalmite/microbiologia , Proteína Ligante Fas/metabolismo , Inflamação/metabolismo , Infecções Estafilocócicas/imunologia , Animais , Endoftalmite/imunologia , Endoftalmite/patologia , Proteína Ligante Fas/genética , Feminino , Predisposição Genética para Doença , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Peroxidase/genética , Peroxidase/metabolismo , Retina/patologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus
18.
J Immunol ; 186(12): 6822-9, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21555531

RESUMO

Programmed death ligand 1 (PDL1, or B7-H1) is expressed constitutively or is induced by IFN-γ on the cell surface of most human cancer cells and acts as a "molecular shield" by protecting tumor cells from T cell-mediated destruction. Using seven cell lines representing four histologically distinct solid tumors (lung adenocarcinoma, mammary carcinoma, cutaneous melanoma, and uveal melanoma), we demonstrate that transfection of human tumor cells with the gene encoding the costimulatory molecule CD80 prevents PDL1-mediated immune suppression by tumor cells and restores T cell activation. Mechanistically, CD80 mediates its effects through its extracellular domain, which blocks the cell surface expression of PDL1 but does not prevent intracellular expression of PDL1 protein. These studies demonstrate a new role for CD80 in facilitating antitumor immunity and suggest new therapeutic avenues for preventing tumor cell PDL1-induced immune suppression.


Assuntos
Antígenos CD/imunologia , Antígeno B7-1/imunologia , Linfócitos T/imunologia , Antígeno B7-1/administração & dosagem , Antígeno B7-1/genética , Antígeno B7-H1 , Linhagem Celular Tumoral , Expressão Gênica/efeitos dos fármacos , Humanos , Imunoterapia/métodos , Ativação Linfocitária/imunologia , Transfecção
19.
Cells ; 12(16)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37626899

RESUMO

Limbal stem cell (LSC) deficiency is a frequent and severe complication after chemical injury to the eye. Previous studies have assumed this is mediated directly by the caustic agent. Here we show that LSC damage occurs through immune cell mediators, even without direct injury to LSCs. In particular, pH elevation in the anterior chamber (AC) causes acute uveal stress, the release of inflammatory cytokines at the basal limbal tissue, and subsequent LSC damage and death. Peripheral C-C chemokine receptor type 2 positive/CX3C motif chemokine receptor 1 negative (CCR2+ CX3CR1-) monocytes are the key mediators of LSC damage through the upregulation of tumor necrosis factor-alpha (TNF-α) at the limbus. In contrast to peripherally derived monocytes, CX3CR1+ CCR2- tissue-resident macrophages have a protective role, and their depletion prior to injury exacerbates LSC loss and increases LSC vulnerability to TNF-α-mediated apoptosis independently of CCR2+ cell infiltration into the tissue. Consistently, repopulation of the tissue by new resident macrophages not only restores the protective M2-like phenotype of macrophages but also suppresses LSC loss after exposure to inflammatory signals. These findings may have clinical implications in patients with LSC loss after chemical burns or due to other inflammatory conditions.


Assuntos
Traumatismos Oculares , Deficiência Límbica de Células-Tronco , Humanos , Monócitos , Células-Tronco do Limbo , Fator de Necrose Tumoral alfa , Macrófagos , Receptores de Quimiocinas
20.
Cells ; 12(13)2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37443766

RESUMO

The limbus, the vascularized junction between the cornea and conjunctiva, is thought to function as a barrier against corneal neovascularization. However, the exact mechanisms regulating this remain unknown. In this study, the limbal epithelial stem cell (LESC) marker ABCB5 was used to investigate the role of LESCs in corneal neovascularization. In an ABCB5KO model, a mild but significant increase of limbal lymphatic and blood vascular network complexity was observed in developing mice (4 weeks) but not in adult mice. Conversely, when using a cornea suture model, the WT animals exhibited a mild but significant increase in the number of lymphatic vessel sprouts compared to the ABCB5KO, suggesting a contextual anti-lymphangiogenic effect of ABCB5 on the limbal vasculature during development, but a pro-lymphangiogenic effect under inflammatory challenge in adulthood. In addition, conditioned media from ABCB5-positive cultured human limbal epithelial cells (ABCB5+) stimulated human blood and lymphatic endothelial cell proliferation and migration. Finally, a proteomic analysis demonstrated ABCB5+ cells have a pro(lymph)angiogenic as well as an anti-inflammatory profile. These data suggest a novel dual, context-dependent role of ABCB5+ LESCs, inhibiting developmental but promoting inflammatory (lymph)angiogenesis in adulthood and exerting anti-inflammatory effects. These findings are of high clinical relevance in relation to LESC therapy against blindness.


Assuntos
Neovascularização da Córnea , Ceratite , Limbo da Córnea , Adulto , Humanos , Animais , Camundongos , Neovascularização da Córnea/prevenção & controle , Proteômica , Limbo da Córnea/fisiologia , Células-Tronco/fisiologia , Inflamação , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa