Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 70(4): 1328-39, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15704967

RESUMO

[reaction: see text] A diverse array of oxometallic species were examined as catalysts in nucleophilic acyl substitution (NAS) reactions of methyl (or ethyl) esters with protic nucleophiles. Among them, oxotitanium acetylacetonate (TiO(acac)(2)) and vanadyl chloride (VOCl(2)-(THF)(x)()) served as the most efficient and water-tolerant catalysts. Transesterifications of methyl and/or ethyl esters with functionalized (including acid- or base-sensitive) 1 degrees and 2 degrees alcohols can be carried out chemoselectively in refluxed toluene or xylene in a 1:1 substrate stoichiometry using 1 mol % catalyst loading. The resultant products were furnished in 85-100% yields by simple aqueous workup to remove water-soluble catalysts. The new NAS protocol is also amenable to amines and thiols in 74-91% yields, albeit with higher loading (2.5 equiv) of protic nucleophiles. Representative examples of commercial interests such as Padimate O and antioxidant additives for plastics were also examined to demonstrate their practical applications. A 1:1 adduct between TiO(acac)(2) and a given 1-octadecanol was identified as (C(18)H(37)O)(2)Ti(acac)(2) and was responsible for its subsequent NAS of methyl esters.

2.
J Org Chem ; 70(4): 1188-97, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15704950

RESUMO

[reaction: see text] Among six different group VIb oxometallic species examined, dioxomolybdenum dichloride and oxomolybdenum tetrachloride were the most efficient catalysts to facilitate nucleophilic acyl substitution (NAS) of anhydrides with a myriad array of alcohols, amines, and thiols in high yields and high chemoselectivity. In contrast to the well-recognized redox chemical behaviors associated with oxomolybdenum(VI) species, the catalytic NAS was unprecedented and tolerates virtually all kinds of functional groups. By using benzoic anhydride as a mediator for in situ generation of an incipient mixed anhydride-MoO(2)Cl(2) adduct with a given functional alkanoic acid, one can achieve oleate, dipeptide, diphenylmethyl, N-Fmoc-alpha-amino, pyruvic, and tert-butylthio ester, N-tert-butylamide, and trityl methacrylate syntheses with appropriate protic nucleophiles. The amphoteric character of the Mo=O unit in oxomolybdenum chlorides was found to be responsible for the catalytic NAS profile as supported by a control NAS reaction of using an authentic adduct-MoOCl(2)(O(2)CBu(t)())(2) between pivalic anhydride and MoO(2)Cl(2) as the catalyst.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa