Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611832

RESUMO

In order to expand the application of bismuth vanadate (BiVO4) to the field of photoelectrochemistry, researchers have explored the potential of BiVO4 in catalyzing or degrading organic substances, potentially presenting a green and eco-friendly solution. A study was conducted to investigate the impact of electrolytes on the photocatalysis of benzyl alcohol by BiVO4. The research discovered that, in an acetonitrile electrolyte (pH 9) with sodium bicarbonate, BiVO4 catalyzed benzyl alcohol by introducing saturated V5+. This innovation addressed the issue of benzyl alcohol being susceptible to catalysis in an alkaline setting, as V5+ was prone to dissolution in pH 9 on BiVO4. The concern of the photocorrosion of BiVO4 was mitigated through two approaches. Firstly, the incorporation of a non-aqueous medium inhibited the formation of active material intermediates, reducing the susceptibility of the electrode surface to photocorrosion. Secondly, the presence of saturated V5+ further deterred the leaching of V5+. Concurrently, the production of carbonate radicals by bicarbonate played a vital role in catalyzing benzyl alcohol. The results show that, in this system, BiVO4 has the potential to oxidize benzyl alcohol by photocatalysis.

2.
Small ; 19(11): e2206763, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36599667

RESUMO

To fabricate a high-efficiency bulk-heterojunction (BHJ)-based photocathode, introducing suitable interfacial modification layer(s) is a crucial strategy. Surface engineering is especially important for achieving high-performance photocathodes because the photoelectrochemical (PEC) reactions at the photocathode/electrolyte interface are the rate-limiting process. Despite its importance, the influence of interfacial layer morphology regulation on PEC activity has attracted insufficient attention. In this work, RuO2 , with excellent conductivity, capacity and catalytic properties, is utilized as an interfacial layer to modify the BHJ layer. However, the homogeneous coverage of hydrophilic RuO2 on the hydrophobic BHJ surface is challenging. To address this issue, a Pt nanoparticle-assisted homogeneous RuO2 layer deposition method is developed and successfully applied to several BHJ-based photocathodes, achieving superior PEC performance compared to those prepared by conventional interface engineering strategies. Among them, the fluorine-doped tin oxide (FTO)/J71:N2200(Pt)/RuO2 photocathode generates the best photocurrent density of -9.0 mA cm-2 at 0 V with an onset potential of up to 1.0 V under AM1.5 irradiation.

3.
J Am Chem Soc ; 144(30): 13953-13960, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35877552

RESUMO

Vinylene/olefin-linked two-dimensional covalent organic frameworks (v-2D-COFs) have emerged as advanced semiconducting materials with excellent in-plane conjugation, high chemical stabilities, and precisely tunable electronic structures. Exploring new linkage chemistry for the reticular construction of v-2D-COFs remains in infancy and challenging. Herein, we present a solid-state benzobisoxazole-mediated aldol polycondensation reaction for the construction of two novel isomeric benzobisoxazole-bridged v-2D-COFs (v-2D-COF-NO1 and v-2D-COF-NO2) with trans and cis configurations of benzobisoxazole. Interestingly, the isomeric benzobisoxazole linkers endow the two v-2D-COFs with distinct optoelectronic and electrochemical properties, ranging from light absorption and emission to charge-transfer properties. When employed as the photocathode, v-2D-COF-NO1 exhibits a photocurrent of up to ∼18 µA/cm2 under AM 1.5G irradiation at -0.3 V vs reversible hydrogen electrode (RHE), which is twice the value of v-2D-COF-NO2 (∼9.1 µA/cm2). With Pt as a cocatalyst, v-2D-COF-NO1 demonstrates a photocatalytic hydrogen evolution rate of ∼1.97 mmol h-1 g-1, also in clear contrast to that of v-2D-COF-NO2 (∼0.86 mmol h-1 g-1) under identical conditions. This work demonstrates the synthesis of v-2D-COFs via benzobisoxazole-mediated aldol polycondensation with isomeric structures and distinct photocatalytic properties.

4.
J Chem Phys ; 157(9): 094702, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36075723

RESUMO

It is worth understanding the potentials of zero charge (PZCs) and structures of stepped metal/water interfaces, because for many electrocatalytic reactions, stepped surfaces are more active than atomically flat surfaces. Herein, a series of stepped Pt/water interfaces are modeled at different step densities with ab initio molecular dynamics. It is found that the structures of Pt/water interfaces are significantly influenced by the step density, particularly in regard to the distribution of chemisorbed water. The step sites of metal surfaces are more preferred for water chemisorption than terrace sites, and until the step density is very low, water will chemisorb on the terrace. In addition, it is revealed that the PZCs of stepped Pt/water interfaces are generally smaller than that of Pt(111), and the difference is mainly attributed to the difference in their work function, providing a simple way to estimate the PZCs of stepped metal surfaces. Finally, it is interesting to see that the Volta potential difference is almost the same for Pt/water interfaces with different step densities, although their interface structures and magnitude of charge transfer clearly differ.

5.
Small ; 17(52): e2104307, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34725925

RESUMO

Cost-effective photoanodes with remarkable electronic properties are highly demanded for practical photoelectrochemical (PEC) water splitting. The ability to manipulate the surface carrier separation and recombination is pivotal for achieving high PEC performance for water splitting. Here, a facile and economical approach is reported for substantially improving the surface charge separation property of CdS photoanodes through in situ photoactivation, which significantly reduces surface charge recombination through the formation of thiosulfate ion which is favorable to the transfer of photogenerated holes and a uniform nanoporous morphology via the dissolving Cd2+ with phosphate ions on the surface of CdS. The resulting CdS electrodes through scalable particle transfer method exhibit nearly tripled photocurrents, with an incident-photon-to-current conversion efficiency (IPCE) at 480 nm exceeding 80% at 0.6 V versus reversible hydrogen electrode (RHE). And the CdS thin films prepared from chemical bath deposition display quadrupled photocurrents after the stir and PEC activation, with an IPCE of 91.7% at 455 nm and 0.6 V versus RHE. With the suppression of photocorrosion in alkaline borate buffer, the activated photoanodes show great stability for solar hydrogen production at the sacrifice of sulfite. This work brings insights into the design of nanoporous metal sulfide semiconductors for solar water splitting.

6.
J Chem Phys ; 150(4): 041713, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30709278

RESUMO

A photoelectrochemical (PEC) cell composed of two semiconductor electrodes, a photocathode, and a photoanode is a potentially effective means of obtaining hydrogen through spontaneous overall water splitting under light irradiation. However, the long-term stability (that is, operation for more than one day) of a PEC cell has not yet been demonstrated. In addition to the corrosion of both photoelectrodes, the gradual migration of heavy metal cations from the photoanode into the electrolyte can also result in degradation of the cell by contamination of the photocathode surface. In the present work, BiVO4-based photoanodes were used in conjunction with two different modifications: dispersion of a chelating resin in the electrolyte and coating of the photoanode surface with an anion-conducting ionomer. The chelating resin was found to capture Bi3+ cations in the electrolyte before they became deposited on the cathode surface. Consequently, a PEC cell incorporating a BiVO4-based photoanode and a (ZnSe)0.85(CuIn0.7Ga0.3Se2)0.15-based photocathode showed stable overall water splitting over a span of two days under simulated sunlight. To the best of our knowledge, this represents the longest period over which stable PEC cell performance has been established. A considerable decrease in the performance of the BiVO4-based photoanode was still observed due to the continuous dissolution of Bi species, but surface coating of the photoanode with an anion-conducting ionomer prevented the movement of Bi3+ ions into the electrolyte because of the selective conduction of ions. The coating also served as a protective layer that improved the durability of the photoanode. This study therefore suggests a simple yet effective method for the construction of stable PEC cells using semiconductor photoelectrodes.

8.
J Am Chem Soc ; 137(42): 13691-7, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26479423

RESUMO

An electrodeposited Cu2ZnSnS4 (CZTS) compact thin film modified with an In2S3/CdS double layer and Pt deposits (Pt/In2S3/CdS/CZTS) was used as a photocathode for water splitting of hydrogen production under simulated sunlight (AM 1.5G) radiation. Compared to platinized electrodes based on a bare CZTS film (Pt/CZTS) and a CZTS film modified with a CdS single layer (Pt/CdS/CZTS), the Pt/In2S3/CdS/CZTS electrode exhibited a significantly high cathodic photocurrent. Moreover, the coverage of the In2S3 layer was found to be effective for stabilization against degradation induced by photocorrosion of the CdS layer. Bias-free water splitting with a power conversion efficiency of 0.28% was achieved by using a simple two-electrode cell consisting of the Pt/In2S3/CdS/CZTS photocathode and a BiVO4 photoanode.

9.
J Am Chem Soc ; 137(15): 5053-60, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25802975

RESUMO

Photoelectrochemical (PEC) devices that use semiconductors to absorb solar light for water splitting offer a promising way toward the future scalable production of renewable hydrogen fuels. However, the charge recombination in the photoanode/electrolyte (solid/liquid) junction is a major energy loss and hampers the PEC performance from being efficient. Here, we show that this problem is addressed by the conformal deposition of an ultrathin p-type NiO layer on the photoanode to create a buried p/n junction as well as to reduce the charge recombination at the surface trapping states for the enlarged surface band bending. Further, the in situ formed hydroxyl-rich and hydroxyl-ion-permeable NiOOH enables the dual catalysts of CoO(x) and NiOOH for the improved water oxidation activity. Compared to the CoO(x) loaded BiVO4 (CoO(x)/BiVO4) photoanode, the ∼6 nm NiO deposited NiO/CoO(x)/BiVO4 photoanode triples the photocurrent density at 0.6 V(RHE) under AM 1.5G illumination and enables a 1.5% half-cell solar-to-hydrogen efficiency. Stoichiometric oxygen and hydrogen are generated with Faraday efficiency of unity over 12 h. This strategy could be applied to other narrow band gap semiconducting photoanodes toward the low-cost solar fuel generation devices.

10.
Adv Mater ; : e2311692, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619834

RESUMO

This comprehensive review delves into the intricacies of the photoelectrochemical (PEC) water splitting process, specifically focusing on the design, fabrication, and optimization of particle-based photoelectrodes for efficient green hydrogen production. These photoelectrodes, composed of semiconductor materials, potentially harness light energy and generate charge carriers, driving water oxidation and reduction reactions. The versatility of particle-based photoelectrodes as a platform for investigating and enhancing various semiconductor candidates is explored, particularly the emerging complex oxides with compelling charge transfer properties. However, the challenges presented by many factors influencing the performance and stability of these photoelectrodes, including particle size, shape, composition, morphology, surface modification, and electrode configuration, are highlighted. The review introduces the fundamental principles of semiconductor photoelectrodes for PEC water splitting, presents an exhaustive overview of different synthesis methods for semiconductor powders and their assembly into photoelectrodes, and discusses recent advances and challenges in photoelectrode material development. It concludes by offering promising strategies for improving photoelectrode performance and stability, such as the adoption of novel architectures and heterojunctions.

11.
Nanomicro Lett ; 16(1): 175, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639824

RESUMO

Metal-organic frameworks (MOFs) have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity, but the limited catalytic activity and stability has hampered their practical use in water splitting. Herein, we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs (donated as AE-CoNDA) to serve as efficient catalyst for water splitting. AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm-2 and a small Tafel slope of 62 mV dec-1 with excellent stability over 100 h. After integrated AE-CoNDA onto BiVO4, photocurrent density of 4.3 mA cm-2 is achieved at 1.23 V. Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p, which accounts for the fast kinetics and high activity. Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.

12.
J Phys Chem Lett ; 14(35): 7833-7839, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37624858

RESUMO

The comprehensive interpretation of the measured differential Helmholtz capacitance curve is vital for advancing our understanding of the interfacial structure. While several possible physical effects contributing to the Helmholtz capacitance have been proposed theoretically, combining those factors to explain the experimentally observed potential-dependent capacitance profile remains a significant challenge. In this study, we employ ab initio molecular dynamics simulations to model various metal/solution interfaces. Our investigation primarily emphasizes the substantial effect of water chemisorption on the potential-dependent behavior of the Helmholtz capacitance. Additionally, we identify other critical factors that profoundly impact the Helmholtz capacitance: (1) Ions with low hydration energy hinder the availability of surface sites for water adsorption, resulting in a diminished enhancement of capacitance from water chemisorption. (2) Using large-sized ions leads to an expansion of the Helmholtz layer, causing a decrease in the Helmholtz capacitance. (3) Metal surfaces with higher affinity for water attract water adsorption at lower potentials, resulting in a lower peak potential for the differential Helmholtz capacitance curve.

13.
Natl Sci Rev ; 10(9): nwad105, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37842071

RESUMO

Cation effects have been shown in numerous experiments to play a significant role in electrocatalysis. To understand these effects at the molecular level, we systematically investigate the structures and capacitances of electric double layers with a variety of cations as counter charges at Pt(111)-COad/water interfaces with ab initio molecular dynamics. It is encouraging to find that the computed Helmholtz capacitances for different cations are in quantitative agreement with experiments, and that the trend of cation effects on capacitances shows clear correlation with the structures of interface cations of differing sizes and hydration energies. More importantly, we demonstrate the Helmholtz capacitance as the key descriptor for measuring the activity of CO-CO dimerization, the rate-determining step for C2+ formation in electroreduction of CO and CO2. Our work provides atomistic insights into cation effects on electric double layers and electrocatalysis that are crucial for optimizing electrode and electrolyte materials.

14.
ACS Appl Mater Interfaces ; 15(48): 55957-55964, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37992220

RESUMO

The high device density and fabrication complexity have hampered the development of the electronics. The advanced designs, which could implement the functions of the circuits with higher device density but less fabrication complexity, are hence required. Meanwhile, the MoS2-based devices have recently attracted considerable attention owing to their advantages such as the ultrathin thickness. However, the MoS2-based multifunctional multigate one-transistor (MGT) designs with logic-in-memory and artificial synaptic functions have rarely been reported. Here, an MGT structure based on the MoS2 channel is proposed, with both the logic-in-memory and artificial synaptic behaviors and with more controllable processes than the manual transfer. The proposed MoS2-based MGT functions could be attributed to the semijunction mechanism and enhanced effect of the additional terminals with improved controllability. This study is the first to demonstrate that the neuromorphic computing, logic gate, and memory functions can all be achieved in a MoS2 MGT device without using any additional layers or plasticity to a transistor. The reported results provide a new strategy for developing brain-like systems and next-generation electronics using multifunctional designs and ultrathin materials.

15.
Adv Mater ; 35(41): e2304022, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37358536

RESUMO

Electrochemical oxygen evolution reaction (OER) kinetics are heavily correlated with hybridization of the transition metal d-orbital and oxygen intermediate p-orbital, which dictates the barriers of intermediate adsorption/desorption on the active sites of catalysts. Herein, a strategy is developed involving strain engineering and coordination regulation to enhance the hybridization of Ni 3d and O 2p orbitals, and the as-synthesized Ni-2,6-naphthalenedicarboxylic acid metal-organic framework (DD-Ni-NDA) nanosheets deliver a low OER overpotential of 260 mV to reach 10 mA cm-2 . By integrating an alkaline anion exchange membrane electrolyzer and Pt/C electrode, 200 and 500 mA cm-2 current densities are reached with cell voltages of 1.6 and 2.1 V, respectively. When loaded on a BiVO4 photoanode, the nanosheet enables highly active solar-driven water oxygen. Structural characterizations together with theoretical calculations reveal that the spin state of the centre Ni atoms is regulated by the tensile strain and unsaturated coordination defects in DD-Ni-NDA, and such spin regulation facilitates spin-dependent charge transfer of the OER. Molecular orbital hybridization analysis reveals the mechanism of OH* and OOH* adsorption energy regulation by changes in the DD-Ni-NDA spin state, which provides a deeper understanding of the electronic structure design of catalysts for the OER.

16.
J Phys Chem Lett ; 14(2): 481-488, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36625782

RESUMO

The development of abundant, cheap, and highly active catalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is important for hydrogen production. Nanolaminate ternary transition metal carbides (MAX phases) and their derived two-dimensional transition metal carbides (MXenes) have attracted considerable interest for electrocatalyst applications. Herein, four new MAX@MXene core-shell structures (Ta2CoC@Ta2CTx, Ta2NiC@Ta2CTx, Nb2CoC@Nb2CTx, and Nb2NiC@Nb2CTx), in which the core region is Co/Ni-MAX phases while the edge region is MXenes, have been prepared. Under alkaline electrolyte conditions, the Ta2CoC@Ta2CTx core-shell structure showed an overpotential of 239 mV and excellent stability during the HER with MXenes as the active sites. For the OER, the Ta2CoC@Ta2CTx core-shell structure showed an overpotential of 373 mV and a small Tafel plot (56 mV dec-1), which maintained a bulk crystalline structure and generated Co-based oxyhydroxides that formed by surface reconstruction as active sites. Considering rich chemical compositions and structures of MAX phases, this work provides a new strategy for designing multifunctional electrocatalysts and also paves the way for further development of MAX phase-based materials for clean energy applications.

17.
Front Chem ; 10: 832342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273948

RESUMO

The photocathodes are essential in photoelectrochemical systems for harvesting solar energy as green fuels. However, the light-absorbing p-type semiconductor in them usually suffers from carrier recombination issues. An effective strategy to address it is fabricating the p-n heterojunction to create an interfacial electric field. However, plenty of deposition process of the n-type layer for this purpose requires either sophisticated instruments or subsequent treatments, which may damage the vulnerable p-type structure. Herein, we report a mild approach for a ready-to-use n-type layer with full functionality. Structural analyses proved the successful coating of a uniform titania layer (up to 40 nm) over Cu2O without damaging its structure. Owing to the high Ti3+ content, the layer possesses excellent charge transport ability and requires no additional annealing. The heterojunction effectively facilitates the carrier separation and positively shifts the photocurrent onset potential for 0.2 V. The Mott-Schottky plot and the impedance study reveal an enhanced carrier collection with reduced charge transfer resistances. Such a nano-heterojunction can be further loaded with the hydrogen evolution catalyst, which almost doubles the photocurrent with an extended lifetime than that of the pristine Cu2O nanoarray. This approach puts forward a potentially scalable and efficient choice for fabricating photoelectrochemical devices.

18.
ACS Appl Mater Interfaces ; 14(28): 31879-31888, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35793226

RESUMO

Synergistic effect of soft carbon and hard carbon has been proven to be useful for obtaining excellent anode materials for potassium ion battery, which is determined by the mixing degree of precursors. Inspired by the formation of proteins in biology, peptide bonds are used to connect the precursors of the two sort of carbon to prepare soft-hard hybrid carbons with stronger synergistic effects. The hard carbon domain with nanometer size is so highly distributed in the soft carbon that the synergistic effect between two sorts of carbon is significantly enhanced. After the optimization, the diffusion coefficient of as-prepared hybrid carbon (CSHC3-6-1200) is 10 times larger than that of corresponding carbon synthesized by physical method. Consequently, CSHC3-6-1200 can maintain a specific capacity of 71.6 mAh g-1 at a high current density of 1600 mA g-1. It is believed that this new preparation route may bring a new perspective to the development of soft and hard composite carbon material anodes with high power density and ultralong service life.

19.
ACS Appl Mater Interfaces ; 14(27): 30937-30945, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35767458

RESUMO

Air fabrication of CsPbI3 perovskite photovoltaics has been attractive and fast-moving owing to its compatibility to low-cost and up-scalable fabrication. However, due to the inevitable erosions, undesirable traps are formed in air-fabricated CsPbI3 crystals and seriously hinder photovoltaic performance with poor reproduction. Here, 3, 5-difluorobenzoic acid hydrazide (FBJ) is incorporated as trap regulation against external erosions in air-fabricated CsPbI3. Theoretical simulations reveal that FBJ molecules feature stronger absorbance on CsPbI3 than water, which can regulate trap formations for water erosions. In addition, FBJ with solid bonding interaction to CsPbI3 can enlarge formation energy of various defects during crystallization and further suppress traps. Moreover, profiling to reductive hydrazine groups, FBJ inhibits traps for oxidation erosions. Consequently, a champion efficiency of 19.27% with an impressive Voc of 1.225 V is realized with the inverted CsPbI3 devices. Moreover, the optimized devices present superior stability and contain 97.4% after operating at 60 °C for 600 h.

20.
ACS Nano ; 16(6): 9523-9534, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35616603

RESUMO

Two-dimensional metal-organic frameworks (MOFs) have served as favorable prototypes for electrocatalytic oxygen evolution reaction (OER). Despite promising catalytic activity, their OER reaction kinetics are still limited by the sluggish four-electron transfer process. Herein, we develop a ferrocene carboxylic acid (FcCA) partially substituted cobalt-terephthalic acid (CoBDC) catalyst with a bifunctional microreactor composed of two species of Co active sites and ligand FcCA (CoBDC FcCA). Benefiting from the ultrathin nanosheet structure, CoBDC FcCA catalyst exhibits an excellent OER performance with a low overpotential of 280 mV to reach 10 mA cm-2 and a small Tafel slope of 53 mV dec-1. Structure characterization together with theoretical calculations directly unravel the coordination for two species of Co active moieties with FcCA forming a microreactor of tensile strain, leading to a conversion of the Co spin from a high spin state (t2g5eg2) to an intermediate spin state (t2g6eg1) to regulate antibonding states of Co 3d and O 2p orbital. In situ spectroscopic measurements for mechanistic understanding reveal that this CoBDC FcCA catalyst possesses an optimal OH* adsorption energy for propitious formation of O-O bonds in the OOH* intermediate, thus effectively decreasing the thermodynamic Gibbs free energy of the rate-determining step (O* → OOH*) to accelerate reaction kinetics for the whole OER process. When loaded on an integrated BiVO4 photoanode as a cocatalyst, CoBDC FcCA enables highly active solar-driven oxygen production from water splitting.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa