Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 123(12): 7953-8039, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37262362

RESUMO

Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Nanotecnologia/métodos , Biomarcadores , Microfluídica
2.
ACS Appl Bio Mater ; 6(4): 1586-1593, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36926799

RESUMO

Electrochemical aptamer-based (E-AB) sensors suffer from sensor-to-sensor signal variations due to the variation in the total number of probes immobilized on the sensor surface, the effective working area, and the heterogeneity properties of the electrode surface, thus requiring a calibration step prior to each measurement. This is impractical, if not possible, for some cases, e.g., in a complex matrix including blood samples. In response, we propose a calibration-free approach to achieve the measurement of biorelevant small-molecule and protein analytes. Specifically, we employed one reporter labeled onto an aptamer (e.g., methylene blue) for redox signaling, and the other reporter (e.g., ferrocene) was modified onto a self-assembly monolayer as a reference signal. By taking the ratio of the two signals, we achieved a much improved baseline stability and sensor-to-sensor reproducibility, which allows the calibration-free measurement of the analysis of the respective targets, including doxorubicin, vancomycin, and thrombin in both simple buffer and even directly complex samples including serum and whole blood.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Aptâmeros de Nucleotídeos/química , Reprodutibilidade dos Testes , Oxirredução , Vancomicina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa