Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Environ Sci Technol ; 48(10): 5892-901, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24724806

RESUMO

Heterocyclic aromatic hydrocarbons (hetero-PAHs) are increasingly studied at contaminated sites; especially at former industrial facilities where coal tar-oil was handled, e.g., wood treatment plants, high concentrations of hetero-PAHs are frequently detected in groundwater plumes. In previous studies, fractions of groundwater with high estrogenic activity contained hetero-PAHs and their hydroxylated metabolites. To evaluate this preliminary evidence, selected hetero-PAHs were screened for their estrogenic activity in lyticase yeast estrogen screen (LYES) and ER CALUX. All tested substances were inactive in the LYES. Hetero-PAHs such as acridine, xanthene, indole, 2-methylbenzofuran, 2,3-dimethylbenzofuran, dibenzofuran, dibenzothiophene, quinoline, and 6-methylquinoline were positive in the ER CALUX, with estradiol equivalence factors (EEFs) from 2.85 × 10(-7) to 3.18 × 10(-5). The EEF values of these substances were comparable to those of other xenoestrogens (e.g., alkylphenols or bisphenol A) that are sometimes found in surface water. Chemical analyses revealed that T47Dluc cells could metabolize most of the substances. Among the metabolites (tentatively) identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) were hydroxides and their keto tautomers, sulfates, sulfoxides, and N-oxides. Because of their high concentrations measured in groundwater, we conclude that hetero-PAHs and metabolites may be a potential risk and should be the subject of further research.


Assuntos
Bioensaio/métodos , Estrogênios/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Recombinação Genética , Ativação Transcricional , Linhagem Celular Tumoral , Cromatografia Líquida , Intervalos de Confiança , Humanos , Relação Quantitativa Estrutura-Atividade , Receptores de Estrogênio/metabolismo , Espectrometria de Massas em Tandem , Água
2.
J Hazard Mater ; 449: 130981, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36801715

RESUMO

The discovery of new disinfection by-products (DBPs) is still a rarely investigated research area in past studies. In particular, compared to freshwater pools, therapeutic pools with their unique chemical composition have rarely been investigated for novel DBPs. Here we have developed a semi-automated workflow that combines data from target and non-target screening, calculated and measured toxicities into a heat map using hierarchical clustering to assess the pool's overall potential chemical risk. In addition, we used complementary analytical techniques such as positive and negative chemical ionization to demonstrate how novel DBPs can be better identified in future studies. We identified two representatives of the haloketones (pentachloroacetone, and pentabromoacetone) and tribromo furoic acid detected for the first time in swimming pools. Non-target screening combined with target analysis and toxicity assessment may help to define risk-based monitoring strategies in the future, as required by regulatory frameworks for swimming pool operations worldwide.


Assuntos
Desinfetantes , Piscinas , Poluentes Químicos da Água , Desinfecção/métodos , Desinfetantes/análise , Poluentes Químicos da Água/química , Água
3.
Water Res ; 221: 118847, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35841789

RESUMO

Persistent and mobile (PM) chemicals spread quickly in the water cycle and can reach drinking water. If these chemicals are also toxic (PMT) they may pose a threat to the aquatic environment and drinking water alike, and thus measures to prevent their spread are necessary. In this study, nontarget screening and cell-based toxicity tests after a polarity-based fractionation into polar and non-polar chemicals are utilized to assess and compare the effectiveness of ozonation and filtration through activated carbon in a wastewater treatment and drinking water production plant. Especially during wastewater treatment, differences in removal efficiency were evident. While median areas of non-polar features were reduced by a factor of 270, median areas for polar chemicals were only reduced by a factor of 4. Polar features showed significantly higher areas than their non-polar counterparts in wastewater treatment plant effluent and finished drinking water, implying a protection gap for these chemicals. Toxicity tests revealed higher initial toxicities (especially oxidative stress and estrogenic activity) for the non-polar fraction, but also showed a more pronounced decrease during treatment. Generally, the toxicity of the effluent was low for both fractions. Combined, these results imply a less effective removal but also a lower toxicity of polar chemicals. The behaviour of features during advanced waste and drinking water treatment was used to classify them as either PM chemicals or mobile transformation products (M-TPs). A suspect screening of the 476 highest intensity PM chemicals and M-TPs in 57 environmental and tap water samples showed high frequencies of detection (median >80%), which indicates the wide distribution of these chemicals in the aquatic environment and thus supports the chosen classification approach and the more generally applicability of obtained insights.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal , Águas Residuárias , Purificação da Água/métodos
4.
Toxics ; 9(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925422

RESUMO

Due to their beneficial properties, the use of zinc oxide nanoparticles (ZnO NP) is constantly increasing, especially in consumer-related areas, such as food packaging and food additives, which is leading to an increased oral uptake of ZnO NP. Consequently, the aim of our study was to investigate the cellular uptake of two differently sized ZnO NP (<50 nm and <100 nm; 12-1229 µmol/L) using two human intestinal cell lines (Caco-2 and LT97) and to examine the possible resulting toxic effects. ZnO NP (<50 nm and <100 nm) were internalized by both cell lines and led to intracellular changes. Both ZnO NP caused time- and dose-dependent cytotoxic effects, especially at concentrations of 614 µmol/L and 1229 µmol/L, which was associated with an increased rate of apoptotic and dead cells. ZnO NP < 100 nm altered the cell cycle of LT97 cells but not that of Caco-2 cells. ZnO NP < 50 nm led to the formation of micronuclei in LT97 cells. The Ames test revealed no mutagenicity for both ZnO NP. Our results indicate the potential toxicity of ZnO NP after oral exposure, which should be considered before application.

5.
Water Res ; 204: 117645, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34547688

RESUMO

Persistent and mobile chemicals (PM chemicals) were searched for in surface waters by hydrophilic interaction liquid chromatography (HILIC) and supercritical fluid chromatography (SFC), both coupled to high resolution mass spectrometry (HRMS). A suspect screening was performed using a newly compiled list of 1310 potential PM chemicals to the data of 11 surface water samples from two river systems. In total, 64 compounds were identified by this approach. The overlap between HILIC- and SFC-HRMS was limited (31 compounds), confirming the complementarity of the two methods used. The identified PM candidates are characterized by a high polarity (median logD -0.4 at pH 7.5), a low molecular weight (median 187 g/mol), are mostly ionic (54 compounds) and contain a large number of heteroatoms (one per four carbons on average). Among the most frequently detected novel or yet scarcely investigated water contaminants were cyanoguanidine (11/11 samples), adamantan-1-amine (10/11), trifluoromethanesulfonate (9/11), 2-acrylamido-2-methylpropanesulfonate (10/11), and the inorganic anions hexafluorophosphate (11/11) and tetrafluoroborate (10/11). 31% of the identified suspects are mainly used in ionic liquids, a chemically diverse group of industrial chemicals with numerous applications that is so far rarely studied for their occurrence in the environment. Prioritization of the findings of PM candidates is hampered by the apparent lack of toxicity data. Hence, precautionary principles and minimization approaches should be applied for the risk assessment and risk management of these substances. The large share of novel water contaminants among these findings of the suspect screening indicates that the universe of PM chemicals present in the environment has so far only scarcely been explored. Dedicated analytical methods and screening lists appear essential to close the analytical gap for PM compounds.


Assuntos
Cromatografia com Fluido Supercrítico , Cromatografia Líquida , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas , Rios
6.
J Expo Sci Environ Epidemiol ; 31(2): 276-288, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33414480

RESUMO

BACKGROUND: The chemical quality of drinking water is widely unknown in low-income countries. OBJECTIVE: We conducted an exploratory study in Manhiça district (Mozambique) to evaluate drinking water quality using chemical analyses and cell-based assays. METHODS: We measured nitrate, fluoride, metals, pesticides, disinfection by-products, and industrial organochlorinated chemicals, and conducted the bioassays Ames test for mutagenicity, micronuclei assay (MN-FACS), ER-CALUX, and antiAR-CALUX in 20 water samples from protected and unprotected sources. RESULTS: Nitrate was present in all samples (median 7.5 mg/L). Manganese, cobalt, chromium, aluminium, and barium were present in 90-100% of the samples, with median values of 32, 0.6, 2.0, 61, 250 µg/l, respectively. Manganese was above 50 µg/l (EU guideline) in eight samples. Arsenic, lead, nickel, iron, and selenium median values were below the quantification limit. Antimony, cadmium, copper, mercury, zinc and silver were not present. Trihalomethanes, haloacetic acids, haloacetonitriles and haloketones were present in 5-28% samples at levels ≤4.6 µg/l. DDT, dieldrin, diuron, and pirimiphos-methyl were quantified in 2, 3, 3, and 1 sample, respectively (range 12-60 ng/L). Fluoride was present in one sample (0.11 mg/l). Trichloroethene and tetrachloroethene were not present. Samples were negative in the in vitro assays. SIGNIFICANCE: Results suggest low exposure to chemicals, mutagenicity, genotoxicity and endocrine disruption through drinking water in Manhiça population. High concentration of manganese in some samples warrants confirmatory studies, given the potential link to impaired neurodevelopment.


Assuntos
Arsênio , Água Potável , Poluentes Químicos da Água , Arsênio/análise , Monitoramento Ambiental , Moçambique , Poluentes Químicos da Água/análise , Qualidade da Água
7.
Environ Sci Pollut Res Int ; 25(5): 4051-4065, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28936609

RESUMO

In Germany, micropollutants that (may) occur in drinking water are assessed by means of the health-related indicator value (HRIV concept), developed by the German Federal Environment Agency. This concept offers five threshold values (≤ 0.01 to ≤ 3 µg l-1) depending on availability and completeness of data regarding genotoxicity, neurotoxicity, and germ cell-damaging potential. However, the HRIV concept is yet lacking integration of endocrine disruptors as one of the most prominent toxicological concerns in water bodies, including drinking water. Thresholds and proposed bioassays hence urgently need to be defined. Since endocrine disruption of ubiquitary chemicals as pharmaceuticals, industrial by-products, or pesticides is a big issue in current ecotoxicology, the aim of this study was to explore endocrine effects, i.e., estrogenic and androgenic effects, as an important, additional toxicological mode of action for the HRIV concept using a hierarchical set of well-known but improved bioassays. Results indicate that all of the 13 tested substances, industrial chemicals and combustion products (5), pharmaceuticals and medical agents (4), and pesticides and metabolites (4), have no affinity to the estrogen and androgen receptor in human U2OS cells without metabolic activation, even when dosed at their water solubility limit, while in contrast some of these substances showed estrogenic effects in the RYES assay, as predicted in pre-test QSAR analysis. Using a specifically developed S9-mix with the U2OS cells, those micropollutants, i.e., Benzo[a]pyrene, 2,4-Dichlorophenol, 3,3-Dichlorbenzidin, 3,4-Dichloranilin, and diclofenac, they show estrogenic effects at the same concentration range as for the yeast cells. Three of the drinking water-relevant chemicals, i.e., atrazine, tributyltin oxide, and diclofenac, caused effects on hormone production in the H295R assay, which can be correlated with changes in the expression of steroidogenic genes. One chemical, 17α-Ethinylestradiol, caused an estrogenic or anti-androgenic effect in the reproduction test with Potamopyrgus antipodarum. Considering these results, a proposal for a test strategy for micropollutants in drinking water regarding potential endocrine effects (hormonal effects on reproduction and sexual development) will be presented to enhance the existing HRIV concept.


Assuntos
Água Potável/análise , Disruptores Endócrinos/toxicidade , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/toxicidade , Bioensaio , Alemanha , Humanos
8.
Water Res ; 88: 740-749, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26584345

RESUMO

Effluents from wastewater treatment plants (WWTPs) are a major source of estrogenic compounds to the aquatic environment. In the present work, estrogenic activities of effluents from eight municipal WWTPs in Finland were studied. The main objectives of the study were to quantify the concentrations of selected estrogenic compounds, to evaluate their contribution to estrogenic potency and to test the feasibility of the commercial bioassays for wastewater analysis. The effluent samples were analyzed by two in vitro tests, i.e. ERα-CALUX(®) and ELISA-E2, and by liquid chromatography mass spectrometry for six estrogenic compounds: estrone (E1), 17ß-estradiol (E2), estriol (E3), 17α-ethinylestradiol (EE2), 17α-estradiol and bisphenol A (BPA). Estrogenic effects were found in all of the effluent samples with both of the bioassays. The concentrations measured with ELISA-E2 (8.6-61.6 ng/L) were clearly higher but exhibited a similar pattern than those with chemical analysis (E2

Assuntos
Estrogênios/análise , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Aliivibrio fischeri/efeitos dos fármacos , Animais , Cromatografia Líquida , Daphnia/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Estrogênios/toxicidade , Finlândia , Reprodução/efeitos dos fármacos , Espectrometria de Massas em Tandem , Testes de Toxicidade , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidade
9.
Sci Total Environ ; 551-552: 304-16, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26878642

RESUMO

3,4,3',4'-tetrachloroazobenzene (TCAB) is not commercially manufactured but formed as an unwanted by-product in the manufacturing of 3,4-dichloroaniline (3,4-DCA) or metabolized from the degradation of chloranilide herbicides, like propanil. While a considerable amount of research has been done concerning the toxicological and ecotoxicological effects of propanil and 3,4-DCA, limited information is available on TCAB. Our study examined the toxicity of TCAB in comparison to its parent compounds propanil and 3,4-DCA, using a battery of bioassays including in vitro with aryl hydrocarbon receptor (AhR) mediated activity by the 7-ethoxyresorufin-O-deethylase (EROD) assay and micro-EROD, endocrine-disrupting activity with chemically activated luciferase gene expression (CALUX) as well as in vivo with fish embryo toxicity (FET) assays with Danio rerio. Moreover, the quantitative structure activity response (QSAR) concepts were applied to simulate the binding affinity of TCAB to certain human receptors. It was shown that TCAB has a strong binding affinity to the AhR in EROD and micro-EROD induction assay, with the toxic equivalency factor (TEF) of 8.7×10(-4) and 1.2×10(-5), respectively. TCAB presented to be a weak endocrine disrupting compound with a value of estradiol equivalence factor (EEF) of 6.4×10(-9) and dihydrotestosterone equivalency factor (DEF) of 1.1×10(-10). No acute lethal effects of TCAB were discovered in FET test after 96h of exposure. Major sub-lethal effects detected were heart oedema, yolk malformation, as well as absence of blood flow and tail deformation. QSAR modelling suggested an elevated risk to environment, particularly with respect to binding to the AhR. An adverse effect potentially triggering ERß, mineralocorticoid, glucocorticoid and progesterone receptor activities might be expected. Altogether, the results obtained suggest that TCAB exerts a higher toxicity than both propanil and 3,4-DCA. This should be considered when assessing the impact of these compounds for the environment and also for regulatory decisions.


Assuntos
Compostos de Anilina/toxicidade , Compostos Azo/toxicidade , Clorobenzenos/toxicidade , Herbicidas/toxicidade , Propanil/toxicidade , Citocromo P-450 CYP1A1/metabolismo , Ecotoxicologia , Poluentes Ambientais/toxicidade , Receptores de Hidrocarboneto Arílico , Testes de Toxicidade
10.
Aquat Toxicol ; 128-129: 13-24, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23261668

RESUMO

Increasing frequency and intensity of flood events are major concerns in the context of climate change. In addition to the direct hydrological implications of such events, potential ecotoxicological impacts are of increasing interest. It is vital to understand mechanisms of contaminant uptake from suspended particulate matter (SPM) and related effects in aquatic biota under realistic conditions. However, little is known about these processes. Due to recent changes in climate, during summer temperatures of German rivers frequently exceed 25°C. Effects of re-suspension of sediments on biota under elevated temperature regimes are likely to differ from those under lower temperature regimes. To elucidate this differential response of aquatic vertebrates, rainbow trout were exposed to suspensions of sediment from the Rhine River that was spiked with a mixture of polycyclic aromatic hydrocarbons (PAH). The experiments were conducted under two different temperature regimes (24°C or 12°C). Physicochemical parameters, including concentration of PAHs in SPM, and biomarkers in fish (biliary PAH metabolites, 7-ethoxyresorufin O-deethylase activity, lipid peroxidation (LPO), mRNA expression of some genes and micronuclei) were measured over the course of a 12d study. Concentrations of pyrene and phenanthrene decreased over time, while no decrease was observed for chrysene and benzo[a]pyrene. The biomarker cascades, more specifically the temporal dynamics of biomarker reactions, did not only show quantitative differences (i.e. different induction intensity or rate of biomarker responses) at the two temperatures but also qualitative differences, i.e. different biomarker responses were observed. A slight significant increase of biliary metabolites in fish was observed in un-spiked sediment at 24°C. In bile of fish exposed to PAH spiked sediment concentrations of 1-hydroxypyrene and 1-hydroxyphenanthrene increased significantly during the first two days, and then decreased. At 12°C uptake of PAHs was slower and maximum metabolite concentrations in bile were less than in fish exposed at 24°C. Following a latency of two days, concentrations of PAH metabolites in bile of fish exposed at 24°C were followed by a peak in LPO. PAHs spiked into sediments under laboratory conditions were significantly more bioavailable than the PAHs that were already present in un-spiked field-collected sediments.


Assuntos
Biomarcadores/metabolismo , Exposição Ambiental , Inundações , Sedimentos Geológicos/química , Oncorhynchus mykiss/fisiologia , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Análise de Sobrevida , Temperatura , Poluentes Químicos da Água/análise
11.
Ecotoxicology ; 15(7): 583-91, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16960660

RESUMO

Aquatic mesocosm studies assess ecotoxicological effects of chemicals by using small artificial ponds as models of lentic ecosystems. In this study, methods of controlled insertion of macrophytes within an outdoor mesocosm study were explored. Although analytically confirmed concentrations of the model herbicide terbuthylazine were high enough to expect direct effects on phytoplankton, functional parameters and dominant taxa abundance indicated only minor and transient effects. In-situ assays with Lemna minor, Myriophyllum spicatum, Potamogeton lucens and Chara globularis revealed adverse effects at concentrations in accordance with literature data. Complex interactions such as nutrient limitation and competition were possible reasons for the observed growth promotion at the lower concentration of about 5 microg/l terbuthylazine. The approach of macrophyte in-situ bioassays within a mesocosm study proved to be applicable. Presumed advantages are simultaneous acquisition of toxicity data for several species of aquatic plants under more realistic conditions compared to laboratory tests and inclusion of macrophytes as important structural and functional components in mesocosms while limiting their domination of the model ecosystem.


Assuntos
Ecossistema , Triazinas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Bioensaio , Poluentes Químicos da Água/análise , Zooplâncton/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa