Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 49(5): 1125-1128, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426954

RESUMO

Optical beam splitters are essential for classical and quantum photonic on-chip systems. In integrated optical technology, a beam splitter can be implemented as a beam coupler with two input and two output ports. The output phases are constrained by the conservation of energy. In lossless beam splitters, the phase shift between the output fields is π and zero for excitation from the first and second input ports, respectively. Therefore, for excitation from both inputs, the phase between the output fields, defined as beam splitter phase (BSP), is π. The BSP leads to several phenomena, such as the quantum interference between two photons, known as the Hong-Ou-Mandel effect. By introducing losses, BSP values different than π become theoretically possible, but the design of 2 × 2 beam couplers with an arbitrary phase is elusive in integrated optics. Inspired by the growing interest on fundamental limits in electromagnetics and inverse design, here we explore the theoretical limits of symmetrical integrated beam splitters with an arbitrary BSP via adjoint-based topology optimization. Optimized 2D designs accounting for fabrication constraints are obtained for several combinations of loss and phase within the theoretical design space. Interestingly, the algorithm does not converge for objectives outside of the theoretical limits. Designs of beam splitters with arbitrary phase may find use in integrated optics for quantum information processing.

2.
Opt Lett ; 48(21): 5583-5586, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910708

RESUMO

We reveal the generation of a broadband (> 1.9 THz) bi-photon quantum frequency comb (QFC) in a silicon-on-insulator (SOI) Fabry-Pérot micro-cavity and the control of its spectral correlation properties. Correlated photon pairs are generated through three spontaneous four-wave mixing (SFWM) processes by using a co-polarized bi-chromatic coherent input with power P1 and P2 on adjacent resonances of the nonlinear cavity. Adjusting the spectral power ratio r = P1/(P1 + P2) allows control over the influence of each process leading to an enhancement of the overall photon pair generation rate (PGR) µ(r) by a maximal factor of µ(r = 0.5)/µ(r = 0) ≈ 1.5, compared to the overall PGR provided by a single-pump configuration with the same power budget. We demonstrate that the efficiency aND of the non-degenerate excitation SFWM process (NDP) doubles the efficiency a1 ≈ a2 of the degenerate excitation SFWM processes (DP), showing a good agreement with the provided model.

3.
Phys Rev Lett ; 131(23): 233601, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38134802

RESUMO

The Hong-Ou-Mandel (HOM) effect is crucial for quantum information processing, and its visibility determines the system's quantum-classical characteristics. In an experimental and theoretical study of the spectral HOM effect between a thermal field and a heralded single-photon state, we demonstrate that the HOM visibility varies dependent on the relative photon statistics of the interacting fields. Our findings reveal that multiphoton components in a heralded state get engaged in quantum interference with a thermal field, resulting in improved visibilities at certain mean photon numbers. We derive a theoretical relationship for the HOM visibility as a function of the mean photon number of the thermal field and the thermal part of the heralded state. We show that the nonclassicality degree of a heralded state is reflected in its HOM visibility with a thermal field; our results establish a lower bound of 41.42% for the peak visibility, indicating the minimum assignable degree of nonclassicality to the heralded state. This research enhances our understanding of the HOM effect and its application to high-speed remote secret key sharing, addressing security concerns due to multiphoton contamination in heralded states.

4.
Nature ; 546(7660): 622-626, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28658228

RESUMO

Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.

5.
Opt Lett ; 46(5): 1061-1064, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649657

RESUMO

We report on the generation of correlated photon pairs in AlGaAs-on-insulator (AlGaAs-OI) waveguides through nonlinear spontaneous four-wave-mixing (SFWM). Our measurements reveal an SFWM pair generation efficiency of ∼0.096×1012pairs/(sW2) at a wavelength of 1550 nm. This is one of the highest efficiencies achieved to date for integrated SFWM sources. A maximal coincidence-to-accidental ratio of ∼122 is measured. A spectral characterization of the device's pair emission at the quantum level demonstrates a broad generation bandwidth of 2.0 THz, which is important for frequency multiplexing applications. Our results indicate that AlGaAs-OI is an efficient material platform for integrated quantum photonics at telecom wavelengths.

6.
Opt Express ; 27(18): 25251-25264, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31510400

RESUMO

The ability of laser systems to emit different adjustable temporal pulse profiles and patterns is desirable for a broad range of applications. While passive mode-locking techniques have been widely employed for the realization of ultrafast laser pulses with mainly Gaussian or hyperbolic secant temporal profiles, the generation of versatile pulse shapes in a controllable way and from a single laser system remains a challenge. Here we show that a nonlinear amplifying loop mirror (NALM) laser with a bandwidth-limiting filter (in a nearly dispersion-free arrangement) and a short integrated nonlinear waveguide enables the realization and distinct control of multiple mode-locked pulsing regimes (e.g., Gaussian pulses, square waves, fast sinusoidal-like oscillations) with repetition rates that are variable from the fundamental (7.63 MHz) through its 205th harmonic (1.56 GHz). These dynamics are described by a newly developed and compact theoretical model, which well agrees with our experimental results. It attributes the control of emission regimes to the change of the NALM response function that is achieved by the adjustable interplay between the NALM amplification and the nonlinearity. In contrast to previous square wave emissions, we experimentally observed that an Ikeda instability was responsible for square wave generation. The presented approach enables laser systems that can be universally applied to various applications, e.g., spectroscopy, ultrafast signal processing and generation of non-classical light states.

7.
Opt Lett ; 44(6): 1339-1342, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874645

RESUMO

Second-harmonic generation is demonstrated in AlGaAs-on-insulator waveguides at telecom wavelengths. Using this material platform, a maximum internal normalized efficiency of 1202±55% W-1 cm-2 is achieved for a 100 fs pulsed excitation wavelength at 1560 nm. This finding is important towards enabling new chip-scale devices for sensing, metrology, and quantum optics.

8.
Phys Rev Lett ; 122(12): 120501, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30978097

RESUMO

Entanglement witnesses are operators that are crucial for confirming the generation of specific quantum systems, such as multipartite and high-dimensional states. For this reason, many witnesses have been theoretically derived which commonly focus on establishing tight bounds and exhibit mathematical compactness as well as symmetry properties similar to that of the quantum state. However, for increasingly complex quantum systems, established witnesses have lacked experimental achievability, as it has become progressively more challenging to design the corresponding experiments. Here, we present a universal approach to derive entanglement witnesses that are capable of detecting the presence of any targeted complex pure quantum system and that can be customized towards experimental restrictions or accessible measurement settings. Using this technique, we derive experimentally optimized witnesses that are able to detect multipartite d-level cluster states, and that require only two measurement settings. We present explicit examples for customizing the witness operators given different realistic experimental restrictions, including witnesses for high-dimensional entanglement that use only two-dimensional projection measurements. Our work enables us to confirm the presence of probed quantum states using methods that are compatible with practical experimental realizations in different quantum platforms.

9.
Opt Express ; 25(16): 18940-18949, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-29041085

RESUMO

The on-chip generation of large and complex optical quantum states will enable low-cost and accessible advances for quantum technologies, such as secure communications and quantum computation. Integrated frequency combs are on-chip light sources with a broad spectrum of evenly-spaced frequency modes, commonly generated by four-wave mixing in optically-excited nonlinear micro-cavities, whose recent use for quantum state generation has provided a solution for scalable and multi-mode quantum light sources. Pulsed quantum frequency combs are of particular interest, since they allow the generation of single-frequency-mode photons, required for scaling state complexity towards, e.g., multi-photon states, and for quantum information applications. However, generation schemes for such pulsed combs have, to date, relied on micro-cavity excitation via lasers external to the sources, being neither versatile nor power-efficient, and impractical for scalable realizations of quantum technologies. Here, we introduce an actively-modulated, nested-cavity configuration that exploits the resonance pass-band characteristic of the micro-cavity to enable a mode-locked and energy-efficient excitation. We demonstrate that the scheme allows the generation of high-purity photons at large coincidence-to-accidental ratios (CAR). Furthermore, by increasing the repetition rate of the excitation field via harmonic mode-locking (i.e. driving the cavity modulation at harmonics of the fundamental repetition rate), we managed to increase the pair production rates (i.e. source efficiency), while maintaining a high CAR and photon purity. Our approach represents a significant step towards the realization of fully on-chip, stable, and versatile sources of pulsed quantum frequency combs, crucial for the development of accessible quantum technologies.

10.
Opt Lett ; 42(21): 4391-4394, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29088171

RESUMO

We investigate single-channel and multichannel phase-sensitive amplification (PSA) in a highly nonlinear, CMOS-compatible spiral waveguide with ultralow linear and negligible nonlinear losses. We achieve a net gain of 10.4 dB and an extinction ratio of 24.6 dB for single-channel operation, as well as a 5 dB gain and a 15 dB extinction ratio spanning over a bandwidth of 24 nm for multiple-channel operation. In addition, we derive a simple analytic solution that enables calculating the maximum phase-sensitive gain in any Kerr medium featuring linear and nonlinear losses. These results not only give a clear guideline for designing PSA-based amplifiers but also show that it is possible to implement both optical regeneration and amplification in a single on-chip device.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa