Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(32): 21810-21820, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39101747

RESUMO

Photoelectron recoil strongly modifies the high kinetic energy photoemission spectra from atoms and molecules as well as from surface structures. In most cases studied so far, photoemission from atomic-like inner-shell or core orbitals has been assumed to be isotropic in the molecular frame of reference. However, in the presence of molecular field splitting of p or d orbitals, this assumption is not justified per se. We present a general theoretical treatment, linking the orientational distribution of gas-phase molecules to the electron emission and detection in a certain direction in the laboratory frame. The approach is then applied to the S 2p photoemission from a linear molecule such as CS2 and we investigate, how the predicted orientational anisotropies due to molecular field splitting affect the photoelectron recoil excitations. Lastly, experimental S 2p high-kinetic-energy photoelectron spectra of SF6 and CS2 are analyzed using the modeled recoil lineshapes representing the anisotropy-affected recoil effects.

2.
Phys Chem Chem Phys ; 26(11): 8879-8890, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38426309

RESUMO

Radiation therapy uses ionizing radiation to break chemical bonds in cancer cells, thereby causing DNA damage and leading to cell death. The therapeutic effectiveness can be further increased by making the tumor cells more sensitive to radiation. Here, we investigate the role of the initial halogen atom core hole on the photofragmentation dynamics of 2-bromo-5-iodo-4-nitroimidazole, a potential bifunctional radiosensitizer. Bromine and iodine atoms were included in the molecule to increase the photoionization cross-section of the radiosensitizer at higher photon energies. The fragmentation dynamics of the molecule was studied experimentally in the gas phase using photoelectron-photoion-photoion coincidence spectroscopy and computationally using Born-Oppenheimer molecular dynamics. We observed significant changes between shallow core (I 4d, Br 3d) and deep core (I 3d) ionization in fragment formation and their kinetic energies. Despite the fact, that the ions ejected after deep core ionization have higher kinetic energies, we show that in a cellular environment, the ion spread is not much larger, keeping the damage well-localized.


Assuntos
Iodo , Nitroimidazóis , Raios Ultravioleta , Fótons , Radiação Ionizante
3.
Phys Chem Chem Phys ; 26(16): 12725-12737, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38616653

RESUMO

C-I bond extension and fission following ultraviolet (UV, 262 nm) photoexcitation of 2- and 3-iodothiophene is studied using ultrafast time-resolved extreme ultraviolet (XUV) ionization in conjunction with velocity map ion imaging. The photoexcited molecules and eventual I atom products are probed by site-selective ionization at the I 4d edge using intense XUV pulses, which induce multiple charges initially localized to the iodine atom. At C-I separations below the critical distance for charge transfer (CT), charge can redistribute around the molecule leading to Coulomb explosion and charged fragments with high kinetic energy. At greater C-I separations, beyond the critical distance, CT is no longer possible and the measured kinetic energies of the charged iodine atoms report on the neutral dissociation process. The time and momentum resolved measurements allow determination of the timescales and the respective product momentum and kinetic energy distributions for both isomers, which are interpreted in terms of rival 'direct' and 'indirect' dissociation pathways. The measurements are compared with a classical over the barrier model, which reveals that the onset of the indirect dissociation process is delayed by ∼1 ps relative to the direct process. The kinetics of the two processes show no discernible difference between the two parent isomers, but the branching between the direct and indirect dissociation channels and the respective product momentum distributions show isomer dependencies. The greater relative yield of indirect dissociation products from 262 nm photolysis of 3-iodothiophene (cf. 2-iodothiophene) is attributed to the different partial cross-sections for (ring-centred) π∗ ← π and (C-I bond localized) σ∗ ← (n/π) excitation in the respective parent isomers.

4.
J Phys Chem A ; 128(22): 4548-4560, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38713032

RESUMO

We present results from a covariance ion imaging study, which employs extensive filtering, on the relationship between fragment momenta to gain deeper insight into photofragmentation dynamics. A new data analysis approach is introduced that considers the momentum partitioning between the fragments of the breakup of a molecular polycation to disentangle concurrent fragmentation channels, which yield the same ion species. We exploit this approach to examine the momentum exchange relationship between the products, which provides direct insight into the dynamics of molecular fragmentation. We apply these techniques to extensively characterize the dissociation of 1-iodopropane and 2-iodopropane dications prepared by site-selective ionization of the iodine atom using extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Our assignments are supported by classical simulations, using parameters largely obtained directly from the experimental data.

5.
Phys Rev Lett ; 131(25): 253201, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38181353

RESUMO

Excited double-core-hole states of isolated water molecules resulting from the sequential absorption of two x-ray photons have been investigated. These states are formed through an alternative pathway, where the initial step of core ionization is accompanied by the shake-up of a valence electron, leading to the same final states as in the core-ionization followed by core-excitation pathway. The capability of the x-ray free-electron laser to deliver very intense, very short, and tunable light pulses is fully exploited to identify the two different pathways.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa