Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 97(10): e0072223, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37754761

RESUMO

IMPORTANCE: Chronic hepatitis B is the most important cause of liver cancer worldwide and affects more than 290 million people. Current treatments are mostly suppressive and rarely lead to a cure. Therefore, there is a need for novel and curative drugs that target the host or the causative agent, hepatitis B virus itself. Capsid assembly modulators are an interesting class of antiviral molecules that may one day become part of curative treatment regimens for chronic hepatitis B. Here we explore the characteristics of a particularly interesting subclass of capsid assembly modulators. These so-called non-HAP CAM-As have intriguing properties in cell culture but also clear virus-infected cells from the mouse liver in a gradual and sustained way. We believe they represent a considerable improvement over previously reported molecules and may one day be part of curative treatment combinations for chronic hepatitis B.


Assuntos
Antivirais , Capsídeo , Vírus da Hepatite B , Hepatite B Crônica , Montagem de Vírus , Animais , Humanos , Camundongos , Antivirais/classificação , Antivirais/farmacologia , Antivirais/uso terapêutico , Capsídeo/química , Capsídeo/efeitos dos fármacos , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/metabolismo , Células Cultivadas , Vírus da Hepatite B/química , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/metabolismo , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Técnicas In Vitro , Montagem de Vírus/efeitos dos fármacos , Modelos Animais de Doenças
2.
Hepatology ; 78(4): 1252-1265, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37102495

RESUMO

BACKGROUND AND AIMS: Effective therapies leading to a functional cure for chronic hepatitis B are still lacking. Class A capsid assembly modulators (CAM-As) are an attractive modality to address this unmet medical need. CAM-As induce aggregation of the HBV core protein (HBc) and lead to sustained HBsAg reductions in a chronic hepatitis B mouse model. Here, we investigate the underlying mechanism of action for CAM-A compound RG7907. APPROACH AND RESULTS: RG7907 induced extensive HBc aggregation in vitro , in hepatoma cells, and in primary hepatocytes. In the adeno-associated virus (AAV)-HBV mouse model, the RG7907 treatment led to a pronounced reduction in serum HBsAg and HBeAg, concomitant with clearance of HBsAg, HBc, and AAV-HBV episome from the liver. Transient increases in alanine transaminase, hepatocyte apoptosis, and proliferation markers were observed. These processes were confirmed by RNA sequencing, which also uncovered a role for interferon alpha and gamma signaling, including the interferon-stimulated gene 15 (ISG15) pathway. Finally, the in vitro observation of CAM-A-induced HBc-dependent cell death through apoptosis established the link of HBc aggregation to in vivo loss of infected hepatocytes. CONCLUSIONS: Our study unravels a previously unknown mechanism of action for CAM-As such as RG7907 in which HBc aggregation induces cell death, resulting in hepatocyte proliferation and loss of covalently closed circular DNA or its equivalent, possibly assisted by an induced innate immune response. This represents a promising approach to attain a functional cure for chronic hepatitis B.


Assuntos
Hepatite B Crônica , Hepatite B , Camundongos , Animais , Vírus da Hepatite B , Antígenos de Superfície da Hepatite B/metabolismo , Capsídeo/metabolismo , Hepatócitos/metabolismo , Interferon-alfa/farmacologia , Hepatite B/metabolismo , DNA Viral/genética
3.
Antiviral Res ; 224: 105835, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401714

RESUMO

Nucleic acid polymers (NAPs) are an attractive treatment modality for chronic hepatitis B (CHB), with REP2139 and REP2165 having shown efficacy in CHB patients. A subset of patients achieve functional cure, whereas the others exhibit a moderate response or are non-responders. NAP efficacy has been difficult to recapitulate in animal models, with the duck hepatitis B virus (DHBV) model showing some promise but remaining underexplored for NAP efficacy testing. Here we report on an optimized in vivo DHBV duck model and explore several characteristics of NAP treatment. REP2139 was efficacious in reducing DHBV DNA and DHBsAg levels in approximately half of the treated ducks, whether administered intraperitoneally or subcutaneously. Intrahepatic or serum NAP concentrations did not correlate with efficacy, nor did the appearance of anti-DHBsAg antibodies. Furthermore, NAP efficacy was only observed in experimentally infected ducks, not in endogenously infected ducks (vertical transmission). REP2139 add-on to entecavir treatment induced a deeper and more sustained virological response compared to entecavir monotherapy. Destabilized REP2165 showed a different activity profile with a more homogenous antiviral response followed by a faster rebound. In conclusion, subcutaneous administration of NAPs in the DHBV duck model provides a useful tool for in vivo evaluation of NAPs. It recapitulates many aspects of this class of compound's efficacy in CHB patients, most notably the clear division between responders and non-responders.


Assuntos
Infecções por Hepadnaviridae , Vírus da Hepatite B do Pato , Hepatite B Crônica , Hepatite Viral Animal , Ácidos Nucleicos , Animais , Humanos , Vírus da Hepatite B do Pato/genética , Hepatite B Crônica/tratamento farmacológico , Antivirais/farmacologia , Ácidos Nucleicos/uso terapêutico , Polímeros/uso terapêutico , Resultado do Tratamento , Patos/genética , DNA Viral , Hepatite Viral Animal/tratamento farmacológico , Vírus da Hepatite B , Infecções por Hepadnaviridae/tratamento farmacológico , Infecções por Hepadnaviridae/veterinária , Fígado
4.
J Clin Med ; 11(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35268440

RESUMO

Despite a preventive vaccine being available, more than 250 million people suffer from chronic hepatitis B virus (HBV) infection, a major cause of liver disease and HCC. HBV infects human hepatocytes where it establishes its genome, the cccDNA with chromosomal features. Therapies controlling HBV replication exist; however, they are not sufficient to eradicate HBV cccDNA, the main cause for HBV persistence in patients. Core protein is the building block of HBV nucleocapsid. This viral protein modulates almost every step of the HBV life cycle; hence, it represents an attractive target for the development of new antiviral therapies. Capsid assembly modulators (CAM) bind to core dimers and perturb the proper nucleocapsid assembly. The potent antiviral activity of CAM has been demonstrated in cell-based and in vivo models. Moreover, several CAMs have entered clinical development. The aim of this review is to summarize the mechanism of action (MoA) and the advancements in the clinical development of CAMs and in the characterization of their mod of action.

5.
Microbiol Spectr ; 10(3): e0254821, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35670599

RESUMO

Quick and accurate detection of neutralizing antibodies (nAbs) against yellow fever is essential in serodiagnosis during outbreaks for surveillance and to evaluate vaccine efficacy in population-wide studies. All of this requires serological assays that can process a large number of samples in a highly standardized format. Albeit being laborious, time-consuming, and limited in throughput, the classical plaque reduction neutralization test (PRNT) is still considered the gold standard for the detection and quantification of nAbs due to its sensitivity and specificity. Here, we report the development of an alternative fluorescence-based serological assay (SNTFLUO) with an equally high sensitivity and specificity that is fit for high-throughput testing with the potential for automation. Finally, our novel SNTFLUO was cross-validated in several reference laboratories and against international WHO standards, showing its potential to be implemented in clinical use. SNTFLUO assays with similar performance are available for the Japanese encephalitis, Zika, and dengue viruses amenable to differential diagnostics. IMPORTANCE Fast and accurate detection of neutralizing antibodies (nAbs) against yellow fever virus (YFV) is key in yellow fever serodiagnosis, outbreak surveillance, and monitoring of vaccine efficacy. Although classical PRNT remains the gold standard for measuring YFV nAbs, this methodology suffers from inherent limitations such as low throughput and overall high labor intensity. We present a novel fluorescence-based serum neutralization test (SNTFLUO) with equally high sensitivity and specificity that is fit for processing a large number of samples in a highly standardized manner and has the potential to be implemented for clinical use. In addition, we present SNTFLUO assays with similar performance for Japanese encephalitis, Zika, and dengue viruses, opening new avenues for differential diagnostics.


Assuntos
Encefalite Japonesa , Febre Amarela , Infecção por Zika virus , Zika virus , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Testes de Neutralização/métodos , Febre Amarela/diagnóstico , Febre Amarela/epidemiologia , Febre Amarela/prevenção & controle , Vírus da Febre Amarela
6.
Emerg Microbes Infect ; 9(1): 520-533, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116148

RESUMO

The recent Zika virus (ZIKV) epidemic in the Americas, followed by the yellow fever virus (YFV) outbreaks in Angola and Brazil highlight the urgent need for safe and efficient vaccines against the ZIKV as well as much greater production capacity for the YFV-17D vaccine. Given that the ZIKV and the YFV are largely prevalent in the same geographical areas, vaccines that would provide dual protection against both pathogens may obviously offer a significant benefit. We have recently engineered a chimeric vaccine candidate (YF-ZIKprM/E) by swapping the sequences encoding the YFV-17D surface glycoproteins prM/E by the corresponding sequences of the ZIKV. A single vaccine dose of YF-ZIKprM/E conferred complete protection against a lethal challenge with wild-type ZIKV strains. Surprisingly, this vaccine candidate also efficiently protected against lethal YFV challenge in various mouse models. We demonstrate that CD8+ but not CD4+ T cells, nor ZIKV neutralizing antibodies are required to confer protection against YFV. The chimeric YF-ZIKprM/E vaccine may thus be considered as a dual vaccine candidate efficiently protecting mice against both the ZIKV and the YFV, and this following a single dose immunization. Our finding may be particularly important in the rational design of vaccination strategies against flaviviruses, in particular in areas where YFV and ZIKV co-circulate.


Assuntos
Vacina contra Febre Amarela/imunologia , Febre Amarela/prevenção & controle , Vírus da Febre Amarela/imunologia , Zika virus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Chlorocebus aethiops , Camundongos , Linfócitos T/imunologia , Células Vero , Febre Amarela/imunologia , Vacina contra Febre Amarela/uso terapêutico
7.
Emerg Microbes Infect ; 8(1): 1734-1746, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31797751

RESUMO

By infecting mice with the yellow fever virus vaccine strain 17D (YFV-17D; Stamaril®), the dose dependence and evolutionary consequences of neurotropic yellow fever infection was assessed. Highly susceptible AG129 mice were used to allow for a maximal/unlimited expansion of the viral populations. Infected mice uniformly developed neurotropic disease; the virus was isolated from their brains, plaque purified and sequenced. Viral RNA populations were overall rather homogenous [Shannon entropies 0-0.15]. The remaining, yet limited intra-host population diversity (0-11 nucleotide exchanges per genome) appeared to be a consequence of pre-existing clonal heterogeneities (quasispecies) of Stamaril®. In parallel, mice were infected with a molecular clone of YFV-17D which was in vivo launched from a plasmid. Such plasmid-launched YFV-17D had a further reduced and almost clonal evolution. The limited intra-host evolution during unrestricted expansion in a highly susceptible host is relevant for vaccine and drug development against flaviviruses in general. Firstly, a propensity for limited evolution even upon infection with a (very) low inoculum suggests that fractional dosing as implemented in current YF-outbreak control may pose only a limited risk of reversion to pathogenic vaccine-derived virus variants. Secondly, it also largely lowers the chance of antigenic drift and development of resistance to antivirals.


Assuntos
Evolução Molecular , Variação Genética , Febre Amarela/virologia , Vírus da Febre Amarela/genética , Animais , Anticorpos Antivirais/sangue , Encéfalo/patologia , Encéfalo/virologia , Modelos Animais de Doenças , Camundongos , Plasmídeos/genética , Vacina contra Febre Amarela
8.
EBioMedicine ; 12: 156-160, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27658737

RESUMO

The current epidemic of Zika virus (ZIKV) has underscored the urgency to establish experimental systems for studying viral replication and pathogenesis, and countermeasure development. Here we report two ZIKV replicon systems: a luciferase replicon that can differentiate between viral translation and RNA synthesis; and a stable luciferase replicon carrying cell line that can be used to screen and characterize inhibitors of viral replication. The transient replicon was used to evaluate the effect of an NS5 polymerase mutation on viral RNA synthesis and to analyze a known ZIKV inhibitor. The replicon cell line was developed into a 96-well format for antiviral testing. Compare with virus infection-based assay, the replicon cell line allows antiviral screening without using infectious virus. Collectively, the replicon systems have provided critical tools for both basic and translational research.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas , Replicon , Replicação Viral/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Zika virus/fisiologia , Técnicas de Cultura de Células , Linhagem Celular , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Expressão Gênica , Genes Reporter , Genoma Viral , Humanos , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/virologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa