RESUMO
Noncoding DNA is central to our understanding of human gene regulation and complex diseases1,2, and measuring the evolutionary sequence constraint can establish the functional relevance of putative regulatory elements in the human genome3-9. Identifying the genomic elements that have become constrained specifically in primates has been hampered by the faster evolution of noncoding DNA compared to protein-coding DNA10, the relatively short timescales separating primate species11, and the previously limited availability of whole-genome sequences12. Here we construct a whole-genome alignment of 239 species, representing nearly half of all extant species in the primate order. Using this resource, we identified human regulatory elements that are under selective constraint across primates and other mammals at a 5% false discovery rate. We detected 111,318 DNase I hypersensitivity sites and 267,410 transcription factor binding sites that are constrained specifically in primates but not across other placental mammals and validate their cis-regulatory effects on gene expression. These regulatory elements are enriched for human genetic variants that affect gene expression and complex traits and diseases. Our results highlight the important role of recent evolution in regulatory sequence elements differentiating primates, including humans, from other placental mammals.
Assuntos
Sequência Conservada , Evolução Molecular , Genoma , Primatas , Animais , Feminino , Humanos , Gravidez , Sequência Conservada/genética , Desoxirribonuclease I/metabolismo , DNA/genética , DNA/metabolismo , Genoma/genética , Mamíferos/classificação , Mamíferos/genética , Placenta , Primatas/classificação , Primatas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo , Proteínas/genética , Regulação da Expressão Gênica/genéticaRESUMO
Proteins are highly labile molecules, thus requiring the presence of appropriate solvents and excipients in their liquid milieu to keep their stability and biological activity. In this field, ionic liquids (ILs) have gained momentum in the past years, with a relevant number of works reporting their successful use to dissolve, stabilize, extract, and purify proteins. Different approaches in protein-IL systems have been reported, namely, proteins dissolved in (i) neat ILs, (ii) ILs as co-solvents, (iii) ILs as adjuvants, (iv) ILs as surfactants, (v) ILs as phase-forming components of aqueous biphasic systems, and (vi) IL-polymer-protein/peptide conjugates. Herein, we critically analyze the works published to date and provide a comprehensive understanding of the IL-protein interactions affecting the stability, conformational alteration, unfolding, misfolding, and refolding of proteins while providing directions for future studies in view of imminent applications. Overall, it has been found that the stability or purification of proteins by ILs is bispecific and depends on the structure of both the IL and the protein. The most promising IL-protein systems are identified, which is valuable when foreseeing market applications of ILs, e.g., in "protein packaging" and "detergent applications". Future directions and other possibilities of IL-protein systems in light-harvesting and biotechnology/biomedical applications are discussed.
Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Proteínas/química , Solventes/química , Água/química , PolímerosRESUMO
Levels of gene expression underpin organismal phenotypes1,2, but the nature of selection that acts on gene expression and its role in adaptive evolution remain unknown1,2. Here we assayed gene expression in rice (Oryza sativa)3, and used phenotypic selection analysis to estimate the type and strength of selection on the levels of more than 15,000 transcripts4,5. Variation in most transcripts appears (nearly) neutral or under very weak stabilizing selection in wet paddy conditions (with median standardized selection differentials near zero), but selection is stronger under drought conditions. Overall, more transcripts are conditionally neutral (2.83%) than are antagonistically pleiotropic6 (0.04%), and transcripts that display lower levels of expression and stochastic noise7-9 and higher levels of plasticity9 are under stronger selection. Selection strength was further weakly negatively associated with levels of cis-regulation and network connectivity9. Our multivariate analysis suggests that selection acts on the expression of photosynthesis genes4,5, but that the efficacy of selection is genetically constrained under drought conditions10. Drought selected for earlier flowering11,12 and a higher expression of OsMADS18 (Os07g0605200), which encodes a MADS-box transcription factor and is a known regulator of early flowering13-marking this gene as a drought-escape gene11,12. The ability to estimate selection strengths provides insights into how selection can shape molecular traits at the core of gene action.
Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/genética , Seleção Genética/genética , Secas , Evolução Molecular , Flores/genética , Flores/crescimento & desenvolvimento , Aptidão Genética/genética , Oryza/crescimento & desenvolvimento , Fotossíntese/genética , Folhas de Planta/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Fatores de Tempo , Fatores de Transcrição/metabolismoRESUMO
It is well established that midbrain dopaminergic neurons support reinforcement learning (RL) in the basal ganglia by transmitting a reward prediction error (RPE) to the striatum. In particular, different computational models and experiments have shown that a striatum-wide RPE signal can support RL over a small discrete set of actions (e.g., no/no-go, choose left/right). However, there is accumulating evidence that the basal ganglia functions not as a selector between predefined actions but rather as a dynamical system with graded, continuous outputs. To reconcile this view with RL, there is a need to explain how dopamine could support learning of continuous outputs, rather than discrete action values. Inspired by the recent observations that besides RPE, the firing rates of midbrain dopaminergic neurons correlate with motor and cognitive variables, we propose a model in which dopamine signal in the striatum carries a vector-valued error feedback signal (a loss gradient) instead of a homogeneous scalar error (a loss). We implement a local, "three-factor" corticostriatal plasticity rule involving the presynaptic firing rate, a postsynaptic factor, and the unique dopamine concentration perceived by each striatal neuron. With this learning rule, we show that such a vector-valued feedback signal results in an increased capacity to learn a multidimensional series of real-valued outputs. Crucially, we demonstrate that this plasticity rule does not require precise nigrostriatal synapses but remains compatible with experimental observations of random placement of varicosities and diffuse volume transmission of dopamine.
Assuntos
Dopamina , Modelos Neurológicos , Retroalimentação , Estudos de Viabilidade , Vias Neurais/fisiologia , Gânglios da Base/fisiologia , Corpo Estriado/fisiologia , Recompensa , Neurônios Dopaminérgicos/fisiologiaRESUMO
The cerebellar cortex computes sensorimotor information from many brain areas through a feedforward inhibitory (FFI) microcircuit between the input stage, the granule cell (GC) layer, and the output stage, the Purkinje cells (PCs). Although in other brain areas FFI underlies a precise excitation versus inhibition temporal correlation, recent findings in the cerebellum highlighted more complex behaviors at GC-molecular layer interneuron (MLI)-PC pathway. To dissect the temporal organization of this cerebellar FFI pathway, we combined ex vivo patch-clamp recordings of PCs in male mice with a viral-based strategy to express Channelrhodopsin2 in a subset of mossy fibers (MFs), the major excitatory inputs to GCs. We show that although light-mediated MF activation elicited pairs of excitatory and inhibitory postsynaptic currents in PCs, excitation (E) from GCs and inhibition (I) from MLIs reached PCs with a wide range of different temporal delays. However, when GCs were directly stimulated, a low variability in E/I delays was observed. Our results demonstrate that in many recordings MF stimulation recruited different groups of GCs that trigger E and/or I, and expanded PC temporal synaptic integration. Finally, using a computational model of the FFI pathway, we showed that this temporal expansion could strongly influence how PCs integrate GC inputs. Our findings show that specific E/I delays may help PCs encoding specific MF inputs.SIGNIFICANCE STATEMENT Sensorimotor information is conveyed to the cerebellar cortex by mossy fibers. Mossy fiber inputs activate granule cells that excite molecular interneurons and Purkinje cells, the sole output of the cerebellar cortex, leading to a sequence of synaptic excitation and inhibition in Purkinje cells, thus defining a feedforward inhibitory pathway. Using electrophysiological recordings, optogenetic stimulation, and mathematical modeling, we demonstrated that different groups of granule cells can elicit synaptic excitation and inhibition with various latencies onto Purkinje cells. This temporal variability controls how granule cells influence Purkinje cell discharge and may support temporal coding in the cerebellar cortex.
Assuntos
Córtex Cerebelar , Células de Purkinje , Camundongos , Masculino , Animais , Células de Purkinje/fisiologia , Córtex Cerebelar/fisiologia , Cerebelo/fisiologia , Neurônios/fisiologia , Interneurônios/fisiologiaRESUMO
Crop production systems need to expand their outputs sustainably to feed a burgeoning human population. Advances in genome sequencing technologies combined with efficient trait mapping procedures accelerate the availability of beneficial alleles for breeding and research. Enhanced interoperability between different omics and phenotyping platforms, leveraged by evolving machine learning tools, will help provide mechanistic explanations for complex plant traits. Targeted and rapid assembly of beneficial alleles using optimized breeding strategies and precise genome editing techniques could deliver ideal crops for the future. Realizing desired productivity gains in the field is imperative for securing an adequate future food supply for 10 billion people.
Assuntos
Genoma de Planta , Melhoramento Vegetal , Produtos Agrícolas/genética , Edição de Genes/métodos , Genoma de Planta/genética , Humanos , Fenótipo , Melhoramento Vegetal/métodosRESUMO
BACKGROUND: Rice (Oryza sativa L.) is one of the globally important staple food crops, and yield-related traits are prerequisites for improved breeding efficiency in rice. Here, we used six different genome-wide association study (GWAS) models for 198 accessions, with 553,229 single nucleotide markers (SNPs) to identify the quantitative trait nucleotides (QTNs) and candidate genes (CGs) governing rice yield. RESULTS: Amongst the 73 different QTNs in total, 24 were co-localized with already reported QTLs or loci in previous mapping studies. We obtained fifteen significant QTNs, pathway analysis revealed 10 potential candidates within 100kb of these QTNs that are predicted to govern plant height, days to flowering, and plot yield in rice. Based on their superior allelic information in 20 elite and 6 inferior genotypes, we found a higher percentage of superior alleles in the elite genotypes in comparison to inferior genotypes. Further, we implemented expression analysis and enrichment analysis enabling the identification of 73 candidate genes and 25 homologues of Arabidopsis, 19 of which might regulate rice yield traits. Of these candidate genes, 40 CGs were found to be enriched in 60 GO terms of the studied traits for instance, positive regulator metabolic process (GO:0010929), intracellular part (GO:0031090), and nucleic acid binding (GO:0090079). Haplotype and phenotypic variation analysis confirmed that LOC_OS09G15770, LOC_OS02G36710 and LOC_OS02G17520 are key candidates associated with rice yield. CONCLUSIONS: Overall, we foresee that the QTNs, putative candidates elucidated in the study could summarize the polygenic regulatory networks controlling rice yield and be useful for breeding high-yielding varieties.
Assuntos
Estudo de Associação Genômica Ampla , Oryza , Mapeamento Cromossômico , Oryza/genética , Melhoramento Vegetal , Locos de Características Quantitativas/genéticaRESUMO
BACKGROUND: Sustainable crop production along with best nutrient use efficiency is the key indicator of smart agriculture. Foliar application of plant nutrients can complement soil fertilization with improved nutrient uptake, translocation and utilization. Recent developments in slow releasing, nano-fertilizers in agriculture, begins a new era for sustainable use and management of natural resources. This study aims to explore the effectiveness of nano-nitrogen usage on plant growth, yield attributes and sustaining rice production while optimizing fertilizer N application through conventional (prilled urea) and nano-N source under salt stress conditions. RESULTS: The strategic substitutions of traditional urea by nano-nitrogen was distributed from partial to complete with 33, 50, 66 and 100% applications. Further, the strategic substitutions were compared in saline (ECe â¼ 6.0 dSm- 1) and sodic stress (pH â¼ 9.1) conditions along with normal soils to dissect the beneficial response of nano-N in two rice varieties (CSR 30 and PB 1121). Salt stress affected the plant performance by decreasing leaf relative water content upto 10%, total chlorophyll content by 1.3-1.5%, leaf area upto 29.9%, gas exchange attributes by 10-39%, with concomitant yield reductions upto â¼ 4%. Collateral improvement in leaf greenness (SPAD index) crop growth rate and net assimilation rate was observed with foliar application of Nano-N. 0.2-1.64% enhancement in growth traits, 0.93-1.85% in physiological traits, and comparable yield gains with 100% recommended dose of prilled were comparative with nano-substitutions. Salt tolerant rice variety, CSR-30 performed better than PB 1121 with better expression of morphological, physiological and yield traits under stress conditions and nitrogen substitutions. CONCLUSIONS: Overall, our experimental findings revealed agricultural use of nano-N in improving the plant physiological efficiency and optimizing rice yields with partial N substitution through nano fertilizers under salt stress conditions. These studies are further open for futuristic aspects of long term effects of nano-fertilizers on soil nutrient depletion in correlation to yield enhancement in salt affected soils.
Assuntos
Fertilizantes , Nitrogênio , Oryza , Estresse Salino , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Oryza/efeitos dos fármacos , Oryza/metabolismo , Nitrogênio/metabolismo , Solo/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/metabolismoRESUMO
To increase rice yields and feed billions of people, it is essential to enhance genetic gains. However, the development of new varieties is hindered by longer generation times and seasonal constraints. To address these limitations, a speed breeding facility has been established and a robust speed breeding protocol, SpeedFlower is developed that allows growing 4-5 generations of indica and/or japonica rice in a year. Our findings reveal that a high red-to-blue (2R > 1B) spectrum ratio, followed by green, yellow and far-red (FR) light, along with a 24-h long day (LD) photoperiod for the initial 15 days of the vegetative phase, facilitated early flowering. This is further enhanced by 10-h short day (SD) photoperiod in the later stage and day and night temperatures of 32/30 °C, along with 65% humidity facilitated early flowering ranging from 52 to 60 days at high light intensity (800 µmol m-2 s-1). Additionally, the use of prematurely harvested seeds and gibberellic acid treatment reduced the maturity duration by 50%. Further, SpeedFlower was validated on a diverse subset of 198 rice accessions from 3K RGP panel encompassing all 12 distinct groups of Oryza sativa L. classes. Our results confirmed that using SpeedFlower one generation can be achieved within 58-71 days resulting in 5.1-6.3 generations per year across the 12 sub-groups. This breakthrough enables us to enhance genetic gain, which could feed half of the world's population dependent on rice.
Assuntos
Oryza , Humanos , Oryza/genética , Melhoramento Vegetal , LuzRESUMO
In part
RESUMO
The brain is organized as a network of highly specialized networks of spiking neurons. To exploit such a modular architecture for computation, the brain has to be able to regulate the flow of spiking activity between these specialized networks. In this Opinion article, we review various prominent mechanisms that may underlie communication between neuronal networks. We show that communication between neuronal networks can be understood as trajectories in a two-dimensional state space, spanned by the properties of the input. Thus, we propose a common framework to understand neuronal communication mediated by seemingly different mechanisms. We also suggest that the nesting of slow (for example, alpha-band and theta-band) oscillations and fast (gamma-band) oscillations can serve as an important control mechanism that allows or prevents spiking signals to be routed between specific networks. We argue that slow oscillations can modulate the time required to establish network resonance or entrainment and, thereby, regulate communication between neuronal networks.
Assuntos
Rede Nervosa/fisiologia , Potenciais de Ação , Animais , Comunicação Celular , Humanos , Modelos Neurológicos , Neurônios/fisiologia , Transmissão Sináptica/fisiologiaRESUMO
INTRODUCTION: Limited consensus exists on the optimal treatment strategy for clinical M1a non-small-cell lung cancer (NSCLC) presenting as a primary tumor with additional intrapulmonary nodules in a contralateral lobe ("M1a-Contra"). This study sought to compare long-term survival of patients with M1a-Contra tumors receiving multimodal therapy with versus without thoracic surgery. METHODS: Overall survival of patients with cT1-4, N0-3, M1a NSCLC with contralateral intrapulmonary nodules who received surgery as part of multimodal therapy ("Thoracic Surgery") versus systemic therapy with or without radiation ("No Thoracic Surgery") in the National Cancer Database from 2010 to 2015 was evaluated using Kaplan-Meier analysis, Cox proportional hazards modeling, and propensity score matching. RESULTS: Of the 5042 patients who satisfied study inclusion criteria, 357 (7.1%) received multimodal therapy including surgery. In multivariable-adjusted analysis, the Thoracic Surgery cohort had better overall survival than the No Thoracic Surgery cohort (HR: 0.66, 95% CI: 0.56-0.79, P < 0.001). In a propensity score-matched analysis of 386 patients, well-balanced on 12 common prognostic covariates, the Thoracic Surgery group had better 5-year overall survival than the No Thoracic Surgery group (P = 0.020). In propensity score-matched analyses stratified by clinical N status, Thoracic Surgery was associated with better overall survival than No Thoracic Surgery for patients with cN0 disease and cN1-2 disease. CONCLUSIONS: In this national analysis, multimodal treatment including surgery was associated with better overall survival than systemic therapy with or without radiation without surgery for patients with M1a-Contra tumors. These preliminary findings highlight the importance of further evaluation of surgery in a multidisciplinary treatment setting for M1a-Contra tumors.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Humanos , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Neoplasias Pulmonares/cirurgia , Estimativa de Kaplan-Meier , Nódulos Pulmonares Múltiplos/cirurgia , Pneumonectomia , Estadiamento de Neoplasias , Estudos RetrospectivosRESUMO
BACKGROUND: Abdominal bloating is a common complaint in patients with functional and organic bowel disease. Rifaximin, a nonabsorbable antibiotic, has been tried for the treatment of this disease. We performed a systematic review and meta-analysis to study the efficacy of rifaximin in abdominal bloating and distension in patients with functional gastrointestinal disorders (FGID). METHODS: We accessed 4 databases (MEDLINE, Embase, SCOPUS, and Web of Science) to identify randomized placebo-controlled trials that utilized rifaximin in FGID. We excluded observational studies, those including patients with organic bowel disorders such as inflammatory bowel diseases, or those in which rifaximin was given for other indications, such as hepatic encephalopathy. RESULTS: A total of 1426 articles were available, of which 813 articles were screened after removing duplicates and 34 articles were selected for full-text review. Finally, 10 trials (3326 patients) were included. Rifaximin was administered in doses ranging from 400 to 1650 mg per day for 1 to 2 weeks. Rifaximin therapy led to a higher likelihood of improvement in symptoms of bloating (44.6% vs. 34.6%, RR 1.22, 95% CI 1.11, 1.35; n=2401 patients) without significant heterogeneity. However, daily doses less than 1200 mg/day were similar to placebo ( P =0.09). Bloating was quantified subjectively in 7 studies, and rifaximin led to a greater reduction in bloating scores compared with placebo (standardized mean difference -0.3, 95% CI -0.51, -0.1, P =0.04) but carried significant heterogeneity ( I2 =61.6%, P =0.01). CONCLUSIONS: Rifaximin therapy is associated with an increased likelihood of improvement in bloating and distension, as well as reduces the subjective severity of these symptoms in patients with FGID.
Assuntos
Gastroenteropatias , Encefalopatia Hepática , Rifamicinas , Humanos , Rifaximina/uso terapêutico , Rifamicinas/uso terapêutico , Antibacterianos/uso terapêutico , Gastroenteropatias/tratamento farmacológico , FlatulênciaRESUMO
An approach towards Cu-free click chemistry has been developed in this work. Silver-catalyzed PCy3-ligand-assisted synthesis of 1,4-disubstituted 1,2,3-triazoles at room temperature has been developed. Regioselectivity of the reaction was confirmed from the results of single-crystal X-ray diffraction (SC-XRD) of one of the products. SC-XRD of ex situ-generated Ag-PCy3 complex helped us propose a plausible mechanism for the reaction. This reaction was indicated to exhibit a catalytic activity level similar to that for the in situ-generated complex. The methodology was found to work well with benzyl azides, phenyl azides, terminal alkynes and internal alkynes in aqueous medium. The one-pot three-component reaction leading to 1,2,3-triazole synthesis also proceeded well.
RESUMO
Bisphenol A (BPA) is one of the most prevalent endocrine disrupting chemicals (EDCs) and there is widespread concern about the adverse effects of EDCs on human health. However, the exact mechanism of these toxicities has still not been fully deciphered. Additionally, studies have reported the toxicological effects at far low doses to the generally considered no-observed-adverse-effect level (NOAEL) dose. The present study investigates the effects of a sub-acute (28 days) exposure to BPA (10, 50 and 100 mg/kg/day) in adult male mice on various hormones levels, sperm motility, sperm count, functional integrity of sperm plasma membrane, testicular histological changes, oxidative stress markers and DNA damage. The key proteome signatures were quantified by LC-MS/MS analysis using Orbitrap Fusion Lumos Tribrid Mass Spectrometer equipped with nano-LC Easy-nLC 1200. Data suggest that the BPA exposure in all doses (below/above NOAEL dose) have greatly impacted the hormone levels, sperm parameters (sperm count, motility and membrane integrity) and testicular histology. Mass spectrometry-based proteomics data suggested for 1352 differentially expressed proteins (DEPs; 368 upregulated, 984 downregulated) affecting biological process, cellular component, and molecular functions. Specifically searched male reproductive function related proteins suggested a complex network where 46 potential proteins regulating spermatogenesis, sperm structure, activity and membrane integrity while tackling oxidative stress responses were downregulated. These potential biomarkers could shed some more light on our current understanding of the reproductive toxicological effects of BPA and may lead to exploration of novel interventions strategies against these targets for male infertility.
Assuntos
Compostos Benzidrílicos , Fenóis , Proteômica , Testículo , Masculino , Animais , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Camundongos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Proteoma/metabolismo , Proteoma/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Saúde Reprodutiva , Estresse Oxidativo/efeitos dos fármacosRESUMO
The degradation of persistent and refractory pollutants, particularly plastic and resins manufacturing wastewater, poses a significant challenge due to their high toxicity and high concentrations. This study developed a novel hybrid ACoO3 (A = La, Ce, Sr)/PMS perovskite system for the treatment of multicomponent (MCs; ACN, ACM and ACY) from synthetic resin manufacturing wastewater. Synthesized perovskites were characterized by various techniques i.e., BET, XRD, FESEM with EDAX, FTIR, TEM, XPS, EIS, and Tafel analysis. Perovskite LaCoO3 exhibited the highest degradation of MCs i.e., ACN (98.7%), ACM (86.3%), and ACY (56.4%), with consumption of PMS (95.2%) under the optimal operating conditions (LaCoO3 dose 0.8 g/L, PMS dose 2 g/L, pH 7.2 and reaction temperature 55 °C). The quantitative contribution (%) of reactive oxygen species (ROS) reveals that SO4â¢- are the dominating radical species, which contribute to ACN (58.3% for SO4â¢- radicals) and ACM degradation (46.4% for SO4â¢- radicals). The tafel plots and EIS spectra demonstrated that perovskites LaCoO3 have better charge transfer rates and more reactive sites that are favorable for PMS activation. Further, four major degradation pathways were proposed based on Fukui index calculations, as well as GC-MS characterization of intermediate byproducts. Based on a stability and reusability study, it was concluded that LaCoO3 perovskites are highly stable, and minimal cobalt leaching occurs (0.96 mg/L) after four cycles. The eco-toxicity assessment performed using QSAR model indicated that the byproducts of the LaCoO3/PMS system are non-toxic nature to common organism (i.e., fish, daphnids and green algae). In addition, the cost of the hybrid LaCoO3/PMS system in a single cycle was estimated to be $34.79 per cubic meter of resin wastewater.
Assuntos
Resinas Sintéticas , Poluentes Químicos da Água , Purificação da Água , Cátions , Purificação da Água/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Acrilonitrila/química , Acrilamida/química , Cobalto , Resinas Sintéticas/química , Resinas Sintéticas/toxicidadeRESUMO
Microbial xylanases are enzymes of great importance due to their wide industrial applications, especially in the degradation of lignocellulosic biomass into fermentable sugars. This study aimed to describe the production optimization and partial characterization of an ultra-thermostable, acidophilic, cellulase-free xylanase from an obligate thermophilic eubacterium Geobacillus thermoleovorans strain-AKNT10 (Ac.No. LT158229) isolated from a hot-spring of Puga Valley located at an altitude of 4419 m in Ladakh, India. The optimization of cultural conditions improved enzyme yield by 10.49-fold under submerged fermentation. The addition of 1% (w/v) xylose induced the enzyme synthesis by ~ 165 and 371% when supplemented in the fermentation medium containing wheat bran (WB) 1 and 3%, respectively. The supplementation of sucrose reduced the xylanase production by ~ 25%. Results of partial characterization exhibited that xylanase was optimally active at pH 6.0 and 100 °C. Enzyme retained > 75%, > 83%, and > 84% of activity at 4 °C for 28 days, 100 °C for 60 min, and pHs 3-8 for 60 min, respectively. An outstanding property of AKNT10-xylanase, was the retention of > 71% residual activity at extreme conditions (121 °C and 15 psi pressure) for 15 min. Enzymatic saccharification showed that enzyme was also capable to liberate maximum reducing sugars within 4-8 h under optimized conditions thus it could be a potential candidate for the bioconversion of lignocellulosic biomass as well as other industrial purposes. To the best of our knowledge, this is the first report on such an ultra-thermo-pressure-tolerant xylanase optimally active at pH 6 and 100 °C from the genus Geobacillus.
Assuntos
Fibras na Dieta , Endo-1,4-beta-Xilanases , Estabilidade Enzimática , Fermentação , Geobacillus , Geobacillus/enzimologia , Geobacillus/genética , Fibras na Dieta/metabolismo , Concentração de Íons de Hidrogênio , Endo-1,4-beta-Xilanases/metabolismo , Endo-1,4-beta-Xilanases/química , Fontes Termais/microbiologia , Temperatura , Índia , Xilose/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Meios de Cultura/químicaRESUMO
The coronaviruses responsible for severe acute respiratory syndrome (SARS-CoV), COVID-19 (SARS-CoV-2), Middle East respiratory syndrome-CoV, and other coronavirus infections express a nucleocapsid protein (N) that is essential for viral replication, transcription, and virion assembly. Phosphorylation of N from SARS-CoV by glycogen synthase kinase 3 (GSK-3) is required for its function and inhibition of GSK-3 with lithium impairs N phosphorylation, viral transcription, and replication. Here we report that the SARS-CoV-2 N protein contains GSK-3 consensus sequences and that this motif is conserved in diverse coronaviruses, raising the possibility that SARS-CoV-2 may be sensitive to GSK-3 inhibitors, including lithium. We conducted a retrospective analysis of lithium use in patients from three major health systems who were PCR-tested for SARS-CoV-2. We found that patients taking lithium have a significantly reduced risk of COVID-19 (odds ratio = 0.51 [0.35-0.74], P = 0.005). We also show that the SARS-CoV-2 N protein is phosphorylated by GSK-3. Knockout of GSK3A and GSK3B demonstrates that GSK-3 is essential for N phosphorylation. Alternative GSK-3 inhibitors block N phosphorylation and impair replication in SARS-CoV-2 infected lung epithelial cells in a cell-type-dependent manner. Targeting GSK-3 may therefore provide an approach to treat COVID-19 and future coronavirus outbreaks.
Assuntos
COVID-19/prevenção & controle , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Compostos de Lítio/uso terapêutico , Adulto , Idoso , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Células HEK293 , Humanos , Compostos de Lítio/farmacologia , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Estudos RetrospectivosRESUMO
Residue behaviour and dietary risk assessment of cyantraniliprole, flubendiamide and acetamiprid in broccoli were carried out using the QuEChERS (quick, easy, cheap, effective, rugged and safe) technique coupled with LC-MS/MS. The QuEChERS technique was validated on parameters such as linearity, accuracy, precision, robustness, matrix effects, limit of quantification (LOQ), specificity, retention time and ion ratio as per SANTE (Directorate General for Health and Food Safety) guidelines to attest to the specificity, accuracy and precision of the analytical method in estimating insecticide residues in and on broccoli heads and cropped soil. The LOQ of the method for all three insecticides was 0.01 mg/kg. The initial deposits of cyantraniliprole, flubendiamide and acetamiprid reduced to half of its concentration in 1.873-2.354, 1.975-2.484 and 1.371-1.620 days, respectively. No residues were detected in broccoli-cropped soil at harvest time (30 days after last spray). The proposed maximum residue limits (MRLs) of 1.5, 0.5-0.9 and 2.0-3 mg/kg for cyantraniliprole, flubendiamide and acetamiprid were calculated using the Organisation for Economic Co-operation and Development MRL calculator. The acute and chronic dietary risk assessment of the tested insecticides identified no appreciable dietary risk to the Indian population from the consumption of broccoli heads. The findings of no dietary risk highlight the importance of informed pesticide usage in broccoli and the proposed MRL derived from this study offers crucial guidelines for the regulatory authorities, ensuring the safety of broccoli consumption.
Assuntos
Brassica , Inseticidas , Limite de Detecção , Resíduos de Praguicidas , Sulfonas , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Resíduos de Praguicidas/análise , Brassica/química , Inseticidas/análise , Reprodutibilidade dos Testes , Cromatografia Líquida/métodos , Medição de Risco , Sulfonas/análise , Neonicotinoides/análise , Benzamidas/análise , Modelos Lineares , ortoaminobenzoatos/análise , ortoaminobenzoatos/química , Pirazóis/análise , Contaminação de Alimentos/análise , Espectrometria de Massa com Cromatografia Líquida , Fluorocarbonos , FtalimidasRESUMO
The nano-sized powder photocatalysts are prone to agglomeration and poor reusability, which cause secondary pollution. To avoid the loss of powder photocatalyst, Titanium dioxide/(TiO2)/impregnated Zirconium (Zr)-chitosan beads were prepared using a simple cross-linking reaction for the peroxymonosulfate activation to aid the tetracycline degradation. The beads' structural, morphological and optical properties were studied using different techniques. The prepared catalysts effectively degraded 97% of tetracycline (10 mg/L) in 20 min of visible light illumination. The sulfate radicals, superoxide radicals, holes and singlet oxygen were found to be the predominant reactive groups that boosted the tetracycline degradation. The key intermediates were analyzed, and the degradation pathway of tetracycline was proposed. The reusable microspheres exhibited maximum reusability up to 10 cycles with an 11% loss in degradation efficiency. Overall, the important advantages of photocatalytic 3D beads include higher reusability, minimal catalytic mass loss during recovery process and stronger visible light utilization via band gap alteration, opening a new horizon toward effective wastewater management.