Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Bioprocess ; 11(1): 5, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38647804

RESUMO

Crop residues in agriculture pose disposal challenges and contribute to air pollution when burned. This study aims to use pigeonpea and maize stalks to produce biochar at different pyrolysis temperatures. Biochar can serve in carbon sequestration, as a soil amendment, and as an alternative fuel source. Pyrolysis was conducted at 400, 500, and 600 °C to examine the effects on physicochemical properties, fuel, and energy related properties. Increase in temperatures resulted in decrease of biochar yield, volatile matter, and O/C and H/C atomic ratios, while ash content and essential nutrients increased. Yield was observed to be higher in pigeonpea stalks derived biochar compared to maize stalks derived biochar at same pyrolysis temperatures. The yields of pigeonpea stalks derived biochar at 400 °C, 500 °C, and 600 °C are 34, 33 and 29%, respectively, and the yields of maize biomass-derived biochar at 400 °C, 500 °C, and 600 °C are 29, 28, and 26%, respectively. The organic carbon content is found to be higher in the biochar samples prepared at 600 °C, i.e., 10.44%, and 10.39% for pigeonpea and maize-derived biochar, respectively. The essential elements of biochar were increased with an increase in pyrolysis temperature except nitrogen which is conversely related to temperature. The biochar obtained through pyrolysis at 400 °C demonstrated superior characteristics compared to biochar produced at other temperatures. It exhibited a higher biochar yield, with approximately 84.60% for pigeonpea and 64.85% for maize fixed carbon content. Additionally, the energy retention efficiency was higher, reaching 67.33% for pigeonpea and 42.70% for maize-derived biochar at a pyrolysis temperature of 400 °C. The fixed carbon recovery efficiency was also notable at around 200.44% for PPS and 142.37% for maize biochar which is higher compared to biochar produced at other temperatures. Furthermore, the higher heating value (HHV) was approximately 30.75 MJ kg-1 for both the biochars, indicating their suitability as alternative solid fuels. A significant CO2 reduction potential of 84 CO2 eq kg-1 and 55 CO2 eq kg-1 was observed for pigeonpea and maize biochar, respectively. Hence, biochar is a promising and effective option for carbon sequestration, offering environmental benefits.

2.
Sci Rep ; 14(1): 17066, 2024 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048579

RESUMO

In the years 2021-2022 and 2022-2023, an experiment was carried out at the IFS Unit, College of Agriculture, PJTSAU, Rajendranagar in order to determine the best one-acre integrated farming system model for Telangana's small and marginal farmers. Seven farm models among which six models were developed by combining the various components i.e., cropping systems, fruit cropfodder crops and livestock components, in different proportions, and compared with rice-groundnut system which is a major farming approach in Telangana using randomized block design. The seven models were as follows: M1: Rice-Groundnut; M2: Rice-Groundnut, Pigeonpea + Sweetcorn (1:3)-Bajra, Bt cotton + Greengram (1:2)-Maize; M3: Rice-Groundnut, Pigeonpea + Sweetcorn (1:3)-Bajra, Pigeonpea + Maize (1:3)-Sunhemp; Napier grass, Sheep (5 + 1); M4: Rice-Groundnut, Pigeonpea + Sweetcorn (1:3)-Bajra, Bt cotton + Greengram (1:2)-Maize, Pigeonpea + Maize (1:3)-Sunhemp, Poultry unit; M5: Guava, Hedge Lucerne, Napier grass, Bt cotton + Greengram (1:2)-Maize, Sheep (5 + 1); M6: Guava, Bt cotton + Greengram (1:2)-Maize, Rice-Groundnut, Poultry; M7: Rice-Groundnut, Pigeonpea + Sweetcorn (1:3)-Bajra, Pigeonpea + Maize (1:3)-Sunhemp; Napier grass, Hedge lucerne, Poultry (100), Sheep (5 + 1). Based on a 2-year average, the Model M7 system produced 9980 Rice Grain Equivalent Yield(RGEY)kg of output per acre, with gross and net returns of ₹210,439 and ₹124,953 respectively, and recovered a B:C ratio of 2.46. It has recorded highest sustainable yield index (SYI) of 0.673 and value index of 0.772 with the lowest water footprint of 259.0 L/kg. This study reveals that adopting an integrated farming system is the optimal approach for effectively combining productive, financially rewarding, and diversified enterprises within a single acre of land.d. This system should be recommended for maximum benefits to smallto small and marginal farmers in Telangana's southern hills and plateau.


Assuntos
Agricultura , Produtos Agrícolas , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/métodos , Fazendeiros , Animais , Oryza/crescimento & desenvolvimento , Água , Humanos , Gado , Produção Agrícola/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa