Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Biochem Biophys Res Commun ; 725: 150253, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-38880080

RESUMO

Type1 Non-specific Lipid Transfer Protein (CsLTP1) from Citrus sinensis is a small cationic protein possessing a long tunnel-like hydrophobic cavity. CsLTP1 performing membrane trafficking of lipids is a promising candidate for developing a potent drug delivery system. The present work includes in-silico studies and the evaluation of drugs binding to CsLTP1 using biophysical techniques along with the investigation of CsLTP1's ability to enhance the efficacy of drugs employing cell-based bioassays. The in-silico investigations identified Panobinostat, Vorinostat, Cetylpyridinium Chloride, and Fulvestrant with higher affinities and stability of binding to the hydrophobic pocket of CsLTP1. SPR studies revealed strong binding affinities of anticancer drugs, Panobinostat (KD = 1.40 µM) and Vorinostat (KD = 2.17 µM) to CsLTP1 along with the binding and release kinetics. CD and fluorescent spectroscopy revealed drug-induced conformational changes in CsLTP1. CsLTP1-associated drug forms showed remarkably enhanced efficacy in MCF-7 cells, representing increased cell cytotoxicity, intracellular ROS, reduced mitochondrial membrane potential, and up-regulation of proapoptotic markers than the free drugs employing qRT-PCR and western blot analysis. The findings demonstrate that CsLTP1 binds strongly to hydrophobic drugs to facilitate their transport, hence improving their therapeutic efficacy revealed by the in-vitro investigations. This study establishes an excellent foundation for developing CsLTP1-based efficient drug delivery system.


Assuntos
Antineoplásicos , Proteínas de Transporte , Citrus sinensis , Humanos , Proteínas de Transporte/metabolismo , Proteínas de Transporte/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Células MCF-7 , Citrus sinensis/química , Sistemas de Liberação de Medicamentos/métodos , Simulação de Acoplamento Molecular , Apoptose/efeitos dos fármacos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacologia , Ligação Proteica
2.
Arch Biochem Biophys ; 753: 109888, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232797

RESUMO

The haloacid dehalogenase superfamily implicated in bacterial pathogenesis comprises different enzymes having roles in many metabolic pathways. Staphylococcus lugdunensis, a Gram-positive bacterium, is an opportunistic human pathogen causing infections in the central nervous system, urinary tract, bones, peritoneum, systemic conditions and cutaneous infection. The haloacid dehalogenase superfamily proteins play a significant role in the pathogenicity of certain bacteria, facilitating invasion, survival, and proliferation within host cells. The genome of S. lugdunensis encodes more than ten proteins belonging to this superfamily. However, none of them have been characterized. The present work reports the characterization of one of the haloacid dehalogenase superfamily proteins (SLHAD1) from Staphylococcus lugdunensis. The functional analysis revealed that SLHAD1 is a metal-dependent acid phosphatase, which catalyzes the dephosphorylation of phosphorylated metabolites of cellular pathways, including glycolysis, gluconeogenesis, nucleotides, and thiamine metabolism. Based on the substrate specificity and genomic analysis, the physiological function of SLHAD1 in thiamine metabolism has been tentatively assigned. The crystal structure of SLHAD1, lacking 49 residues at the C-terminal, was determined at 1.7 Å resolution with a homodimer in the asymmetric unit. It was observed that SLHAD1 exhibited time-dependent cleavage at a specific point, occurring through a self-initiated process. A combination of bioinformatics, biochemical, biophysical, and structural studies explored unique features of SLHAD1. Overall, the study revealed a detailed characterization of a critical enzyme of the human pathogen Staphylococcus lugdunensis, associated with several life-threatening infections.


Assuntos
Fosfatase Ácida , Staphylococcus lugdunensis , Humanos , Staphylococcus lugdunensis/metabolismo , Hidrolases/química , Bactérias , Tiamina
3.
J Struct Biol ; 215(4): 108034, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37805153

RESUMO

Transcription is carried out by the RNA polymerase and is regulated through a series of interactions with transcription factors. Catabolite activator repressor (Cra), a LacI family transcription factor regulates the virulence gene expression in Enterohaemorrhagic Escherichia coli (EHEC) and thus is a promising drug target for the discovery of antivirulence molecules. Here, we report the crystal structure of the effector molecule binding domain of Cra from E. coli (EcCra) in complex with HEPES molecule. Based on the EcCra-HEPES complex structure, ligand screening was performed that identified sulisobenzone as an potential inhibitor of EcCra. The electrophoretic mobility shift assay (EMSA) and in vitro transcription assay validated the sulisobenzone binding to EcCra. Moreover, the isothermal titration calorimetry (ITC) experiments demonstrated a 40-fold higher binding affinity of sulisobenzone (KD 360 nM) compared to the HEPES molecule. Finally, the sulisobenzone bound EcCra complex crystal structure was determined to elucidate the binding mechanism of sulisobenzone to the effector binding pocket of EcCra. Together, this study suggests that sulisobenzone may be a promising candidate that can be studied and developed as an effective antivirulence agent against EHEC.


Assuntos
Escherichia coli , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Escherichia coli/metabolismo , Proteínas Repressoras/genética , HEPES/metabolismo , Regulação Bacteriana da Expressão Gênica , Ligação Proteica
4.
J Struct Biol ; 215(3): 107992, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37394197

RESUMO

Of the two putative amino acid binding periplasmic receptors of ABC transporter family in Candidatus Liberibacter asiaticus (CLas), cystine binding receptor (CLasTcyA) has been shown to mainly express in phloem of citrus plant and is a target for inhibitor development. The crystal structure of CLasTcyA in complex with substrates has been reported earlier. The present work reports the identification and evaluation of potential candidates for their inhibitory potential against CLasTcyA. Among many compounds, selected through virtual screening, and MD simulation, pimozide, clidinium, sulfasalazine and folic acid showed significantly higher affinities and stability in complex with CLasTcyA. The SPR studies with CLasTcyA revealed significantly higher binding affinities for pimozide and clidinium (Kd, 2.73 nM and 70 nM, respectively) as compared to cystine (Kd, 1.26 µM). The higher binding affinities could be attributed to significantly increased number of interactions in the binding pocket as evident from the crystal structures of CLasTcyA in complex with pimozide and clidinium as compared to cystine. The CLasTcyA possess relatively large binding pocket where bulkier inhibitors fit quite well. In planta studies, carried out to assess the effect of inhibitors on HLB infected Mosambi plants, showed significant reduction in CLas titre in plants treated with inhibitors as compared to control plants. The results showed that pimozide exhibited higher efficiency as compared to clidinium in reducing CLas titre in treated plants. Our results showed that the inhibitor development against critical proteins like CLasTcyA can be an important strategy in management of HLB.


Assuntos
Rhizobiaceae , Cistina/farmacologia , Pimozida/farmacologia , Doenças das Plantas
5.
Proteins ; 91(4): 508-517, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36345957

RESUMO

Dye-decolorizing peroxidases (DyPs), a type of heme-containing oxidoreductase enzymes, catalyze the peroxide-dependent oxidation of various industrial dyes as well as lignin and lignin model compounds. In our previous work, we have recently reported the crystal structures of class A-type DyP from Bacillus subtilis at pH 7.0 (BsDyP7), exposing the location of three binding sites for small substrates and high redox-potential substrates. The biochemical studies revealed the optimum acidic pH for enzyme activity. In the present study, the crystal structure of BsDyP at acidic pH (BsDyP4) reveals two-monomer units stabilized by intermolecular salt bridges and a hydrogen bond network in a homo-dimeric unit. Based on the monomeric structural comparison of BsDyP4 and BsDyP7, minor differences were observed in the loop regions, that is, LI (Ala64-Gln71), LII (Glu96-Lys108), LIII (Pro117-Leu124), and LIV (Leu295-Asp303). Despite these differences, BsDyP4 adopts similar heme architecture as well as three substrate-binding sites to BsDyP7. In BsDyP4, a shift in Asp187, heme pocket residue discloses the plausible reason for optimal acidic pH for BsDyP activity. This study provides insight into the structural changes in BsDyP at acidic pH, where BsDyP is biologically active.


Assuntos
Bacillus subtilis , Peroxidase , Peroxidase/metabolismo , Corantes/metabolismo , Lignina/química , Peroxidases/química , Peroxidases/metabolismo , Concentração de Íons de Hidrogênio , Heme/metabolismo
6.
IUBMB Life ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38059400

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be over, but its variants continue to emerge, and patients with mild symptoms having long COVID is still under investigation. SARS-CoV-2 infection leading to elevated cytokine levels and suppressed immune responses set off cytokine storm, fatal systemic inflammation, tissue damage, and multi-organ failure. Thus, drug molecules targeting the SARS-CoV-2 virus-specific proteins or capable of suppressing the host inflammatory responses to viral infection would provide an effective antiviral therapy against emerging variants of concern. Evolutionarily conserved papain-like protease (PLpro) and main protease (Mpro) play an indispensable role in the virus life cycle and immune evasion. Direct-acting antivirals targeting both these viral proteases represent an attractive antiviral strategy that is also expected to reduce viral inflammation. The present study has evaluated the antiviral and anti-inflammatory potential of natural triterpenoids: azadirachtin, withanolide_A, and isoginkgetin. These molecules inhibit the Mpro and PLpro proteolytic activities with half-maximal inhibitory concentrations (IC50 ) values ranging from 1.42 to 32.7 µM. Isothermal titration calorimetry (ITC) analysis validated the binding of these compounds to Mpro and PLpro. As expected, the two compounds, withanolide_A and azadirachtin, exhibit potent anti-SARS-CoV-2 activity in cell-based assays, with half-maximum effective concentration (EC50 ) values of 21.73 and 31.19 µM, respectively. The anti-inflammatory roles of azadirachtin and withanolide_A when assessed using HEK293T cells, were found to significantly reduce the levels of CXCL10, TNFα, IL6, and IL8 cytokines, which are elevated in severe cases of COVID-19. Interestingly, azadirachtin and withanolide_A were also found to rescue the decreased type-I interferon response (IFN-α1). The results of this study clearly highlight the role of triterpenoids as effective antiviral molecules that target SARS-CoV-2-specific enzymes and also host immune pathways involved in virus-mediated inflammation.

7.
Arch Biochem Biophys ; 750: 109820, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37956938

RESUMO

The nucleocapsid (N) protein of SARS-CoV-2 plays a pivotal role in encapsulating the viral genome. Developing antiviral treatments for SARS-CoV-2 is imperative due to the diminishing immunity of the available vaccines. This study targets the RNA-binding site located in the N-terminal domain (NTD) of the N-protein to identify the potential antiviral molecules against SARS-CoV-2. A structure-based repurposing approach identified the twelve high-affinity molecules from FDA-approved drugs, natural products, and the LOPAC1280 compound libraries that precisely bind to the RNA binding site within the NTD. The interaction of these potential antiviral agents with the purified NTD protein was thermodynamically characterized using isothermal titration calorimetry (ITC). A fluorescence-based plate assay to assess the RNA binding inhibitory activity of small molecules against the NTD has been employed, and the selected compounds exhibited significant RNA binding inhibition with calculated IC50 values ranging from 8.8 µM to 15.7 µM. Furthermore, the antiviral efficacy of these compounds was evaluated using in vitro cell-based assays targeting the replication of SARS-CoV-2. Remarkably, two compounds, Telmisartan and BMS-189453, displayed potential antiviral activity against SARS-CoV-2, with EC50 values of approximately 1.02 µM and 0.98 µM, and a notable selective index of >98 and > 102, respectively. This study gives valuable insight into developing therapeutic interventions against SARS-CoV-2 by targeting the N-protein, a significant effort given the global public health concern posed due to the virus re-emergence and long COVID-19 disease.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/química , Síndrome de COVID-19 Pós-Aguda , Nucleocapsídeo/metabolismo , Termodinâmica , RNA , Simulação de Acoplamento Molecular
8.
J Bacteriol ; 204(3): e0054321, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35007143

RESUMO

Biodegradation of terephthalate (TPA) is a highly desired catabolic process for the bacterial utilization of this polyethylene terephthalate (PET) depolymerization product, but to date, the structure of terephthalate dioxygenase (TPDO), a Rieske oxygenase (RO) that catalyzes the dihydroxylation of TPA to a cis-diol, is unavailable. In this study, we characterized the steady-state kinetics and first crystal structure of TPDO from Comamonas testosteroni KF1 (TPDOKF1). TPDOKF1 exhibited substrate specificity for TPA (kcat/Km = 57 ± 9 mM-1 s-1). The TPDOKF1 structure harbors characteristic RO features as well as a unique catalytic domain that rationalizes the enzyme's function. The docking and mutagenesis studies reveal that its substrate specificity for TPA is mediated by the Arg309 and Arg390 residues, positioned on opposite faces of the active site. Additionally, residue Gln300 is also proven to be crucial for the activity, as its mutation to alanine decreases the activity (kcat) by 80%. This study delineates the structural features that dictate the substrate recognition and specificity of TPDO. IMPORTANCE Global plastic pollution has become the most pressing environmental issue. Recent studies on enzymes depolymerizing polyethylene terephthalate plastic into terephthalate (TPA) show some potential for tackling this. Microbial utilization of this released product, TPA, is an emerging and promising strategy for waste-to-value creation. Research in the last decade has identified terephthalate dioxygenase (TPDO) as being responsible for initiating the enzymatic degradation of TPA in a few Gram-negative and Gram-positive bacteria. Here, we determined the crystal structure of TPDO from Comamonas testosteroni KF1 and revealed that it possesses a unique catalytic domain featuring two basic residues in the active site to recognize TPA. Biochemical and mutagenesis studies demonstrated the crucial residues responsible for the substrate specificity of this enzyme.


Assuntos
Dioxigenases , Ácidos Ftálicos , Dioxigenases/química , Oxigenases/genética , Ácidos Ftálicos/metabolismo , Plásticos , Polietilenotereftalatos/metabolismo
9.
J Biol Chem ; 297(6): 101416, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34800435

RESUMO

Phthalate, a plasticizer, endocrine disruptor, and potential carcinogen, is degraded by a variety of bacteria. This degradation is initiated by phthalate dioxygenase (PDO), a Rieske oxygenase (RO) that catalyzes the dihydroxylation of phthalate to a dihydrodiol. PDO has long served as a model for understanding ROs despite a lack of structural data. Here we purified PDOKF1 from Comamonas testosteroni KF1 and found that it had an apparent kcat/Km for phthalate of 0.58 ± 0.09 µM-1s-1, over 25-fold greater than for terephthalate. The crystal structure of the enzyme at 2.1 Å resolution revealed that it is a hexamer comprising two stacked α3 trimers, a configuration not previously observed in RO crystal structures. We show that within each trimer, the protomers adopt a head-to-tail configuration typical of ROs. The stacking of the trimers is stabilized by two extended helices, which make the catalytic domain of PDOKF1 larger than that of other characterized ROs. Complexes of PDOKF1 with phthalate and terephthalate revealed that Arg207 and Arg244, two residues on one face of the active site, position these substrates for regiospecific hydroxylation. Consistent with their roles as determinants of substrate specificity, substitution of either residue with alanine yielded variants that did not detectably turnover phthalate. Together, these results provide critical insights into a pollutant-degrading enzyme that has served as a paradigm for ROs and facilitate the engineering of this enzyme for bioremediation and biocatalytic applications.


Assuntos
Proteínas de Bactérias/química , Comamonas testosteroni/enzimologia , Oxigenases/química , Proteínas de Bactérias/genética , Catálise , Comamonas testosteroni/genética , Cristalografia por Raios X , Oxigenases/genética , Domínios Proteicos , Especificidade por Substrato
10.
Arch Biochem Biophys ; 727: 109314, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35667443

RESUMO

Phthalate cis-4,5-dihydrodiol dehydrogenase (PhtC), the second enzyme of the phthalate catabolic pathway, catalyzes the dehydrogenation of cis-4,5-dihydrodiol phthalate (DDP). Here, we report the structural and biochemical characterization of PhtC from Comamonas testosteroni KF1 (PhtCKF1). With biochemical experiments, we have determined the enzyme's catalytic efficiency (kcat/Km) with DDP as 2.6 ± 0.5 M-1s-1, over 10-fold higher than with cis-3,4-dihydrodiol phthalate (CDP). To understand the structural basis of these reactions, the crystal structures of PhtCKF1 in apo-form, the binary complex with NAD+, and the ternary complex with NAD+ and 3-hydroxybenzoate (3HB) were determined. These crystal structures reveal that the binding of 3HB induces a conformational change in the substrate-binding loop. This conformational change causes the opening of the NAD + binding site while trapping the 3HB. The PhtCKF1 crystal structures show that the catalytic domain of PhtCKF1 is larger than that of other structurally characterized homologs and does not align with other cis-diol dehydrogenases. Structural and mutational analysis of the substrate-binding loop residues, Arg164 and Glu167 establish that conformational flexibility of this loop is necessary for positioning the substrate in a catalytically competent pose, as substitution of either of these residues to Ala did not yield the dehydrogenation activity. Further, based on the crystal structures of PhtCKF1 and related structural homologs, a reaction mechanism is proposed. Finally, with the biochemical analysis of a variant M251LPhtCKF1, the broader substrate specificity of this enzyme is explained.


Assuntos
NAD , Oxirredutases , Oxirredutases do Álcool , Sítios de Ligação , Catálise , Cristalografia por Raios X , Modelos Moleculares , NAD/metabolismo , Oxirredutases/metabolismo , Ácidos Ftálicos , Especificidade por Substrato
11.
J Chem Inf Model ; 62(10): 2409-2420, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35475370

RESUMO

FmtA is a novel esterase that shares the penicillin-binding protein (PBP) core structural folding but found to hydrolyze the removal of d-Ala from teichoic acids. Molecular docking, dynamics, and MM-GBSA of FmtA and its variants S127A, K130A, Y211A, D213A, and K130AY211A, in the presence or absence of wall teichoic acid (WTA), suggest that active site residues S127, K130, Y211, D213, N343, and G344 play a role in substrate binding. Quantum mechanics (QM)/molecular mechanics (MM) calculations reveal that during WTA catalysis, K130 deprotonates S127, and the nucleophilic S127 attacks the carbonyl carbon of d-Ala bound to WTA. The tetrahedral intermediate (TI) complex is stabilized by hydrogen bonding to the oxyanion holes. The TI complex displays a high energy gap and collapses to an energetically favorable acyl-enzyme complex.


Assuntos
Esterases , Staphylococcus aureus , Catálise , Parede Celular/química , Parede Celular/metabolismo , Esterases/análise , Esterases/metabolismo , Simulação de Acoplamento Molecular , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/análise , Ácidos Teicoicos/química , Ácidos Teicoicos/metabolismo
12.
Biochem Biophys Res Commun ; 580: 28-34, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34610489

RESUMO

The native pumpkin 2S albumin, a multifunctional protein, possess a variety of potential biotechnologically exploitable properties. The present study reports the characterization of recombinant pumpkin 2S albumin (rP2SA) and unraveling of its potential DNA/RNA binding site. The purification and characterization of the rP2SA established that it retains the characteristic α-helical structure and exhibited comparable DNase, RNase, antifungal and anti-proliferative activities as native protein. In vitro studies revealed that rP2SA exhibits potent antiviral activity against chikungunya virus (CHIKV) at a non-toxic concentration with an IC50 of 114.5 µg/mL. In silico studies and site-directed mutagenesis were employed to unravel the potential DNA/RNA binding site. A strong positive charge distribution due to presence of many arginine residues in proximity of helix 5 was identified as a potential site. The two of the arginine residues, conserved in some 2S albumins, were selected for the mutation studies. The mutated forms of recombinant protein (R84A and R91A) showed a drastic reduction in DNase and RNase activities suggesting their presence at binding site and involvement in the nuclease activity. A metal binding site was also identified adjacent to DNA/RNA binding site. The present study demonstrated the structural and functional integrity of the rP2SA and reports potential antiviral activity against CHIKV. Further, potential DNA/RNA binding site was unraveled through mutation studies and bioinformatics analysis.


Assuntos
Albuminas/genética , Cucurbita/genética , Proteínas de Plantas/genética , Albuminas/metabolismo , Albuminas/farmacologia , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Cucurbita/metabolismo , DNA/metabolismo , Modelos Moleculares , Mutação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacologia , Ligação Proteica , RNA/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Sementes/genética
13.
Arch Biochem Biophys ; 713: 109060, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34666048

RESUMO

Catabolite repressor activator (Cra) is a member of the LacI family transcriptional regulator distributed across a wide range of bacteria and regulates the carbon metabolism and virulence gene expression. In numerous studies to crystallize the apo form of the LacI family transcription factor, the N-terminal domain (NTD), which functions as a DNA-binding domain, has been enigmatically missing from the final resolved structures. It was speculated that the NTD is disordered or unstable and gets cleaved during crystallization. Here, we have determined the crystal structure of Cra from Escherichia coli (EcCra). The structure revealed a well-defined electron density for the C-terminal domain (CTD). However, electron density was missing for the first 56 amino acids (NTD). Our data reveal for the first time that EcCra undergoes a spontaneous cleavage at the conserved Asn 50 (N50) site, which separates the N-terminal DNA binding domain from the C-terminal effector molecule binding domain. With the site-directed mutagenesis, we confirm the involvement of residue N50 in the spontaneous cleavage phenomenon. Furthermore, the Isothermal titration calorimetry (ITC) assay of the EcCra-NTD with DNA showed EcCra-NTD is in a functional conformation state and retains its DNA binding activity.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , DNA/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Mutagênese Sítio-Dirigida , Mutação , Domínios Proteicos , Proteólise , Proteínas Repressoras/química , Proteínas Repressoras/genética
14.
Mol Cell Biochem ; 476(2): 553-574, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33029696

RESUMO

Since the first case reports in Wuhan, China, the SARS-CoV-2 has caused a pandemic and took lives of > 8,35,000 people globally. This single-stranded RNA virus uses Angiotensin-converting enzyme 2 (ACE2) as a receptor for entry into the host cell. Overexpression of ACE2 is mainly observed in hypertensive, diabetic and heart patients that make them prone to SARS-CoV-2 infection. Mitigations strategies were opted globally by the governments to minimize transmission of SARS-CoV-2 via the implementation of social distancing norms, wearing the facemasks, and spreading awareness using digital platforms. The lack of an approved drug treatment regimen, and non-availability of a vaccine, collectively posed a challenge for mankind to fight against the SARS-CoV-2 pandemic. In this scenario, repurposing of existing drugs and old treatment options like convalescent plasma therapy can be one of the potential alternatives to treat the disease. The drug repurposing provides a selection of drugs based on the scientific rationale and with a shorter cycle of clinical trials, while plasma isolated from COVID-19 recovered patients can be a good source of neutralizing antibody to provide passive immunity. In this review, we provide in-depth analysis on these two approaches currently opted all around the world to treat COVID-19 patients. For this, we used "Boolean Operators" such as AND, OR & NOT to search relevant research articles/reviews from the PUBMED for the repurposed drugs and the convalescent plasma in the COVID-19 treatment. The repurposed drugs like Chloroquine and Hydroxychloroquine, Tenofovir, Remdesivir, Ribavirin, Darunavir, Oseltamivir, Arbidol (Umifenovir), Favipiravir, Anakinra, and Baricitinib are already being used in clinical trials to treat the COVID-19 patients. These drugs have been approved for a different indication and belong to a diverse category such as anti-malarial/anti-parasitic, anti-retroviral/anti-viral, anti-cancer, or against rheumatoid arthritis. Although, the vaccine would be an ideal option for providing active immunity against the SARS-CoV-2, but considering the current situation, drug repurposing and convalescent plasma therapy and repurposed drugs are the most viable option against SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Tratamento Farmacológico da COVID-19 , Pandemias , SARS-CoV-2/genética , COVID-19/genética , COVID-19/terapia , COVID-19/virologia , China , Cloroquina/uso terapêutico , Reposicionamento de Medicamentos/métodos , Humanos , Imunização Passiva/métodos , SARS-CoV-2/patogenicidade , Soroterapia para COVID-19
15.
Bioorg Med Chem ; 46: 116356, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34416512

RESUMO

The ongoing COVID-19 pandemic, periodic recurrence of viral infections, and the emergence of challenging variants has created an urgent need of alternative therapeutic approaches to combat the spread of viral infections, failing to which may pose a greater risk to mankind in future. Resilience against antiviral drugs or fast evolutionary rate of viruses is stressing the scientific community to identify new therapeutic approaches for timely control of disease. Host metabolic pathways are exquisite reservoir of energy to viruses and contribute a diverse array of functions for successful replication and pathogenesis of virus. Targeting the host factors rather than viral enzymes to cease viral infection, has emerged as an alternative antiviral strategy. This approach offers advantage in terms of increased threshold to viral resistance and can provide broad-spectrum antiviral action against different viruses. The article here provides substantial review of literature illuminating the host factors and molecular mechanisms involved in innate/adaptive responses to viral infection, hijacking of signalling pathways by viruses and the intracellular metabolic pathways required for viral replication. Host-targeted drugs acting on the pathways usurped by viruses are also addressed in this study. Host-directed antiviral therapeutics might prove to be a rewarding approach in controlling the unprecedented spread of viral infection, however the probability of cellular side effects or cytotoxicity on host cell should not be ignored at the time of clinical investigations.


Assuntos
Antivirais/farmacologia , Vírus de RNA de Cadeia Positiva/efeitos dos fármacos , Animais , Citocinas/metabolismo , Mudança da Fase de Leitura do Gene Ribossômico/efeitos dos fármacos , Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , Glicosilação/efeitos dos fármacos , Humanos , Imunidade/efeitos dos fármacos , Imunidade/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/fisiologia , Poliaminas/metabolismo , Vírus de RNA de Cadeia Positiva/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/fisiologia
16.
Curr Microbiol ; 79(1): 20, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34905108

RESUMO

The sudden rise in COVID-19 cases in 2020 and the incessant emergence of fast-spreading variants have created an alarming situation worldwide. Besides the continuous advancements in the design and development of vaccines to combat this deadly pandemic, new variants are frequently reported, possessing mutations that rapidly outcompeted an existing population of circulating variants. As concerns grow about the effects of mutations on the efficacy of vaccines, increased transmissibility, immune escape, and diagnostic failures are few other apprehensions liable for more deadly waves of COVID-19. Although the phenomenon of antigenic drift in new variants of SARS-CoV-2 is still not validated, it is conceived that the virus is acquiring new mutations as a fitness advantage for rapid transmission or to overcome immunological resistance of the host cell. Considerable evolution of SARS-CoV-2 has been observed since its first appearance in 2019, and despite the progress in sequencing efforts to characterize the mutations, their impacts in many variants have not been analyzed. The present article provides a substantial review of literature explaining the emerging variants of SARS-CoV-2 circulating globally, key mutations in viral genome, and the possible impacts of these new mutations on prevention and therapeutic strategies currently administered to combat this pandemic. Rising infections, mortalities, and hospitalizations can possibly be tackled through mass vaccination, social distancing, better management of available healthcare infrastructure, and by prioritizing genome sequencing for better serosurveillance studies and community tracking.


Assuntos
COVID-19 , SARS-CoV-2 , Deriva e Deslocamento Antigênicos , Genoma Viral , Humanos
17.
J Bacteriol ; 202(18)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32661075

RESUMO

Chlorogenic acid (CGA) is a phenolic compound with well-known antibacterial properties against pathogens. In this study, structural and biochemical characterization was used to show the inhibitory role of CGA against the enzyme of the shikimate pathway, a well-characterized drug target in several pathogens. Here, we report the crystal structures of dehydroquinate synthase (DHQS), the second enzyme of the shikimate pathway, from Providencia alcalifaciens (PaDHQS), in binary complex with NAD and ternary complex with NAD and CGA. Structural analyses reveal that CGA occupies the substrate position in the active site of PaDHQS, which disables domain movements, leaving the enzyme in an open and catalysis-incompetent state. The binding analyses by isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) show that CGA binds to PaDHQS with KD (equilibrium dissociation constant) values of 6.3 µM and 0.5 µM, respectively. In vitro enzyme inhibition studies show that CGA inhibits PaDHQS with a Ki of 235 ± 21 µM, while it inhibits the growth of Providencia alcalifaciens, Moraxella catarrhalis, Staphylococcus aureus, and Escherichia coli with MIC values of 60 to 100 µM. In the presence of aromatic amino acids supplied externally, CGA does not show the toxic effect. These results, along with the observations of the inhibition of the 3-deoxy-d-arabino-heptulosonate-7-phosphate (DAHP) regulatory domain by CGA in our previous study, suggest that CGA binds to shikimate pathway enzymes with high affinity and inhibits their catalysis and can be further exploited for designing novel drug-like molecules.IMPORTANCE The shikimate pathway is an attractive target for the development of herbicides and antimicrobial agents, as it is essential in plants, bacteria, and apicomplexan parasites but absent in humans. The enzymes of shikimate pathway are conserved among bacteria. Thus, the inhibitors of the shikimate pathway act on wide range of pathogens. We have identified that chlorogenic acid targets the enzymes of the shikimate pathway. The crystal structure of dehydroquinate synthase, the second enzyme of the pathway, in complex with chlorogenic acid and enzymatic inhibition studies explains the mechanism of inhibition of chlorogenic acid. These results suggest that chlorogenic acid has a good chemical scaffold and have important implications for its further development as a potent inhibitor of shikimate pathway enzymes.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/química , Ácido Clorogênico/farmacologia , Fósforo-Oxigênio Liases/química , Providencia/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Sítios de Ligação , Domínio Catalítico , Cinética , Fósforo-Oxigênio Liases/antagonistas & inibidores , Ligação Proteica , Providencia/enzimologia , Ácido Chiquímico/metabolismo
18.
Arch Biochem Biophys ; 693: 108590, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32971035

RESUMO

The dye-decolorizing peroxidases (DyPs) belong to a unique heme peroxidase family for their biotechnological potential to detoxify synthetic dyes. In this work, we have biochemically and structurally characterized the dye-decolorizing peroxidase from Bacillus subtilis (BsDyP). The biochemical studies of BsDyP demonstrate that pH 4.0 is optimum for the oxidation of malachite green (MG) and methyl violet (MV). However, it oxidizes the MG with higher catalytic efficiency (kcat/Km = 6.3 × 102 M-1s-1), than MV (kcat/Km = 5.0 × 102 M-1s-1). While reactive black 5 (RB5) is oxidized at pH 3.0 with the catalytic efficiency of kcat/Km = 3.6 × 102 M-1s-1. The calculated thermodynamic parameters by isothermal titration calorimetry (ITC) reveal the feasibility and spontaneity of dyes binding with BsDyP. Further, the crystal structures of a HEPES bound and unbound of BsDyP provide insight into the probable binding sites of the substrates. In BsDyP-HEPES bound structure, the HEPES-1 molecule is found in the heme cavity at the γ-edge, and another HEPES-2 molecule is bound ~16 Å away from the heme that is fenced by Ile231, Arg234, Ser235, Asp239, Glu334, and surface-exposed Tyr335 residues. Furthermore, the molecular docking, simulation, and MMPBSA studies support the binding of dyes at both the sites of BsDyP and produce lower-energy stable BsDyP-dyes complexes. Here, the BsDyP study allows the identification of its two potential binding sites and shows the oxidation of a variety of dyes. Structural and functional insight of BsDyP will facilitate its engineering for the improved decolorization of dyes.


Assuntos
Bacillus subtilis/metabolismo , Cor , Corantes/metabolismo , Peroxidases/metabolismo , Bacillus subtilis/enzimologia
19.
J Struct Biol ; 204(2): 228-239, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30125692

RESUMO

The subtle internal communications through an intricate network of interactions play a key role in metal-binding and release in periplasmic metal uptake proteins of cluster A-I family, a component of ABC transport system. These proteins have evolved different mechanisms of metal-binding and release through sequence and thereby structure-function divergence. The CLas-ZnuA2 from Candidatus Liberibacter asiaticus (CLA), in previous studies, showed a lower metal-binding affinity. The subtle communications within and between domains from crystal structure analysis revealed that protein seems to prefer a metal-free state. The unique features of CLas-ZnuA2 included a highly restrained loop L3 and presence of a proline in linker helix. In present work, S38A and Y68F mutants were studied as they play an important role during metal-binding in CLas-ZnuA2. The mutations in linker helix could not be studied as the expressed protein was not soluble and in most cases degraded with time. The crystal structure analysis of (S38A and Y68F) mutants in metal-free and metal-bound forms showed variations in interactions, an increase in number of alternate conformations and distortions in secondary structure elements, despite a similar overall structure, suggesting alterations in internal communications. The results suggested that any change in critical residues could alter the subtle internal communications and result in disturbing the fine-tuned structure required for optimal functioning.


Assuntos
Proteínas de Bactérias/metabolismo , Metais/metabolismo , Periplasma/metabolismo , Cinética , Mutagênese Sítio-Dirigida , Mutação/genética , Estrutura Secundária de Proteína , Ressonância de Plasmônio de Superfície
20.
Biochim Biophys Acta Gen Subj ; 1862(3): 726-744, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29092780

RESUMO

BACKGROUD: ß-hydroxyacyl-acyl carrier protein dehydratase (FabZ) is an essential component of type II fatty acid biosynthesis (FAS II) pathway in bacteria. It performs dehydration of ß-hydroxyacyl-ACP to trans-2-acyl-ACP in the elongation cycle of the FAS II pathway. FabZ is ubiquitously expressed and has uniform distribution, which makes FabZ an excellent target for developing novel drugs against pathogenic bacteria. METHODS: We focused on the biochemical and biophysical characterization of FabZ from drug-resistant pathogen Moraxella catarrhalis (McFabZ). More importantly, we have identified and characterized new inhibitors against McFabZ using biochemical, biophysical and in silico based studies. RESULTS: We have identified three isoflavones (daidzein, biochanin A and genistein) as novel inhibitors against McFabZ. Mode of inhibition of these compounds is competitive with IC50 values lie in the range of 6.85µΜ to 27.7µΜ. Conformational changes observed in secondary and tertiary structure marked by a decrease in the helical and the sheet content in McFabZ structure upon inhibitors binding. In addition, thermodynamic data suggest that biochanin A has a strong binding affinity for McFabZ as compare to daidzein and genistein. Molecular docking studies have revealed that these inhibitors are interacting with the active site of McFabZ and making contacts with catalytic and substrate binding tunnel residues. CONCLUSION AND GENERAL SIGNIFICANCE: Three new inhibitors against McFabZ have been identified and characterized. These biochemical and biophysical findings lead to the identification of chemical scaffolds, which can lead to broad-spectrum antimicrobial drugs targeted against FabZ, and modification to existing FabZ inhibitors to improve affinity and potency.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Flavonoides/farmacologia , Hidroliases/antagonistas & inibidores , Moraxella catarrhalis/enzimologia , Acil Coenzima A/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sítios de Ligação/efeitos dos fármacos , Domínio Catalítico/efeitos dos fármacos , Dicroísmo Circular , Sequência Conservada , Desenho de Fármacos , Farmacorresistência Bacteriana Múltipla , Genisteína/farmacologia , Hidroliases/química , Concentração de Íons de Hidrogênio , Isoflavonas/farmacologia , Cinética , Testes de Sensibilidade Microbiana , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Moraxella catarrhalis/efeitos dos fármacos , Filogenia , Conformação Proteica , Proteínas Recombinantes/química , Alinhamento de Sequência , Espectrometria de Fluorescência , Relação Estrutura-Atividade , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa