RESUMO
A cadmium-based metal-organic framework (Cd-MOF) is synthesized in a facile manner at ambient temperature by an easy slow diffusion process. The three-dimensional (3D) structure of Cd-MOF is authenticated by single-crystal X-ray diffraction studies and exhibits a cuboid-shaped morphology with an average edge length of â¼1.13 µm. The prepared Cd-MOF was found to be electroactive in nature, which resulted in a specific capacitance of 647 F g-1 at 4 A g-1 by maintaining a retention of â¼78% over 10,000 successive cycles in the absence of any binder. Further, to distinguish the efficiency of Cd-MOF electrodes, different electrolytes (NaOH, KOH, and LiOH) were explored, wherein NaOH revealed a higher capacitive response due to its combined effect of ionic and hydrated ionic radii. To investigate the practical applicability, an asymmetric supercapacitor (ASC) device is fabricated by employing Cd-MOF as the positive electrode and activated carbon (AC) as the negative electrode, enabling it to light a commercial light-emitting diode (LED) bulb (â¼1.8 V). The as-fabricated ASC device delivers comparable energy density and power density.
RESUMO
Being cognizant of modern electronic devices, the scientists are continuing to investigate renewable green-energy resources for a decade. Amid different energy harvesting systems, the triboelectric nanogenerators (TENGs) have been found to be the most promising mechanical harvesting technology and have drawn attention to generate electrical energy. Thanks to its instant output power, choice to opt for wide-ranging materials, low maintenance cost, easy fabrication process and environmentally friendly nature. Due to numerous working modes of TENGs, it is dedicated to desired application at ambient conditions. In this review, an advance correlation of TENGs have been explained based on the variety of nanostructures, including 0D, 1D, 2D, 3D, metal organic frameworks (MOFs), coordination polymers (CPs), covalent organic frameworks (COFs), and perovskite materials. Moreover, an overview of previous and current perspectives of various nanomaterials, synthesis, fabrication and their applications in potential fields have been discussed in detail.
RESUMO
The successive ionic layer adsorption and reaction (SILAR) experimental process has been used to develop a high-efficiency electrode of MFe2O4 (M = Ni, Co and Mn) on substrates at ambient temperature. Structural, morphological and electrochemical properties have been investigated using x-ray diffraction (XRD), a scanning electron microscope (SEM) and an electrochemical test station, respectively. A morphology resembling the Hydrangea macrophylla flower has been observed and tuned with varying Fe concentration. The formation of MFe2O4 demonstrates the efficient electrochemical behavior and the specific capacitance has been evaluated as â¼1380, â¼972 and â¼815 Fg-1 for CoFe2O4 (CF), NiFe2O4 (NF) and MnFe2O4 (MF), respectively, at a current density of 1 Ag-1. Also, the developed electrodes maintain excellent cyclic retention of â¼92%, â¼89% and â¼86% for CF, NF, and MF, respectively, up to 5000 cycles. Further, asymmetric solid-state supercapacitor (ASC) devices have been fabricated using the best compositions of MFe2O4 as a positive electrode and carbon black (CB) as a negative electrode, and successfully illuminate a 1.8 V commercial LED.
RESUMO
We demonstrate a green, facile and rapid microwave-mediated process for fabricating carbon black (CB) incorporated Ni/Co hydroxide porous nanocomposites and study the effect of various mass loading of CB on supercapacitor performance. The structure and interactions between CB and Ni/Co hydroxide are characterized by using x-ray diffraction, Fourier-transform infrared spectroscopy and x-ray photoelectron spectroscopy, which suggest the miniaturization of the single-phase Ni/Co hydroxide formation time. A morphology study reveals that the addition of CB into Ni/Co hydroxide develops a loose network structure with well-defined architectural pores. In addition, the nanocomposites demonstrate noticeable improvements in porosity and atomic ratio of Ni/Co with an increasing percentage of carbon, which results in a higher diffusion of electrolytes, and hence electrical conduction. The developed electrode materials exhibit a maximum specific capacitance value of 1526 Fg-1 at current density 1 Ag-1 with excellent cyclic stability (92% retention at 5000 cycles), energy density (76 Wh Kg-1), power density (250 W Kg-1) and rate capability. A solid state asymmetric supercapacitor device is fabricated and utilized to brighten a commercial LED effectively for validating real usage.
RESUMO
In present study, we have synthesized intrinsically conductive poly(1,6-heptadiynes) via cyclopolymerization technique, and further it is composited with the NiFe2O4 to fabricate pellet for electrical and electronic applications. The synthesized polymer I-V characteristics were obtained by two-probe measurement technique. The results suggest that the high current density of the synthesized polymer was in the range of 1.2 × 10-5-3.1 × 10-5 S/cm, which attributes to the potentially induced hoping charge-carrier mechanism within the conjugated poly(1,6-heptadiynes). NiFe2O4 and NiFe2O4/poly(1,6-heptadiynes) composite pellets were fabricated by utilizing hydraulic pelletizer. The sample's electrical measurements were performed via broad-band dielectric impedance spectroscopy, wherein the composite permittivity was about ε = 45 (100 Hz to 10 kHz), which attributes to the NiFe2O4 and poly(1,6-heptadiynes) phases; further, this describes the capacitance, which improved from 0.3 to 0.1 pf at 1 kHz. Also, these results suggest the reduced equivalent series resistance (72.1-1 MHz), which attributes to the incorporated intrinsically conducting poly(1,6-heptadiynes). Thus, the reduced dissipation factor (DF = 0.0032) was observed from impedance characteristics of a nanocomposite. Moreover, the improved Q-factor was observed, which was about 8.1-310 at 1 kHz. The resistance and capacitance time constant was also computed to be about 0.29 µs at 1 kHz for NiFe2O4/poly(1,6-heptadiynes) nanocomposite. Furthermore, the nanocomposite-enabled capacitor gravimetric energy density and power densities were calculated to be about 0.00575 mJ/g and 9.91 W/g, respectively. Additionally, thermal threatening, that is, heat generated within the capacitor, P loss is also estimated for the nanocomposite capacitor, which improved from 0.0006 to 8.9 × 10-6, and these results suggest improved nanocomposite thermal stability. Further, the delineated quantities were compared to the commercially available configurations of tantalum hybrid capacitors and Al and Ta electrolytic capacitors, including carbon electrochemical capacitors, which suggest that the reported nanocomposites could be a suitable candidate for electrical and electronic applications.