Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 112(1): e35352, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37982372

RESUMO

The development of patient-specific bone scaffolds that can expedite bone regeneration has been gaining increased attention, especially for critical-sized bone defects or fractures. Precise adaptation of the scaffold to the region of implantation and reduced surgery times are also crucial at clinical scales. To this end, bioactive fluorcanasite glass-ceramic microparticulates were incorporated within a biocompatible photocurable resin matrix following which the biocomposite resin precursor was 3D-printed with digital light processing method to develop the bone scaffold. The printing parameters were optimized based on spot curing investigation, particle size data, and UV-visible spectrophotometry. In vitro cell culture with MG-63 osteosarcoma cell lines and pH study within simulated body fluid demonstrated a noncytotoxic response of the scaffold samples. Further, the in vivo bone regeneration ability of the 3D-printed biocomposite bone scaffolds was investigated by implantation of the scaffold samples in the rabbit femur bone defect model. Enhanced angiogenesis, osteoblastic, and osteoclastic activities were observed at the bone-scaffold interface, while examining through fluorochrome labelling, histology, radiography, field emission scanning electron microscopy, and x-ray microcomputed tomography. Overall, the results demonstrated that the 3D-printed biocomposite bone scaffolds have promising potential for bone loss rehabilitation.


Assuntos
Osso e Ossos , Vidro , Alicerces Teciduais , Animais , Humanos , Coelhos , Microtomografia por Raio-X , Regeneração Óssea , Impressão Tridimensional , Osteogênese , Engenharia Tecidual
2.
J Biomater Sci Polym Ed ; 34(4): 497-540, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36124544

RESUMO

Natural bone healing is often inadequate to treat fractures with critical size bone defects and massive bone loss. Immediate surgical interventions through bone grafts have been found to be essential on such occasions. Naturally harvested bone grafts, although are the preferred choice of the surgeons; they suffer from serious clinical limitations, including disease transmission, donor site morbidity, limited supply of graft etc. Synthetic bone grafts, on the other hand, offer a more clinically appealing approach to decode the pathways of bone repair through use of tissue engineered biomaterials. This article critically retrospects the translational research on various engineered biomaterials towards bringing transformative changes in orthopaedic healthcare. The first section of the article discusses about composition and ultrastructure of bone along with the global perspectives on statistical escalation of bone fracture surgeries requiring use of bone grafts. The next section reviews the types, benefits and challenges of various natural and synthetic bone grafts. An overview of clinically relevant biomaterials from traditionally used metallic, bioceramic, and biopolymeric biomaterials to new generation composites have been summarised. Finally, this narrative review concludes with the discussion on the emerging trends and future perspectives of the promising bone grafts.


Assuntos
Materiais Biocompatíveis , Pesquisa Translacional Biomédica , Transplante Ósseo , Osso e Ossos , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa