Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 29(63): e202302303, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37553318

RESUMO

Synthetic strategies to access high-valent iridium complexes usually require use of π donating ligands bearing electronegative atoms (e. g. amide or oxide) or σ donating electropositive atoms (e. g. boryl or hydride). Besides the η5 -(methyl)cyclopentadienyl derivatives, high-valent η1 carbon-ligated iridium complexes are challenging to synthesize. To meet this challenge, this work reports the oxidation behavior of an all-carbon-ligated anionic bis(CCC-pincer) IrIII complex. Being both σ and π donating, the diaryl dipyrido-annulated N-heterocyclic carbene (dpa-NHC) IrIII complex allowed a stepwise 4e- oxidation sequence. The first 2e- oxidation led to an oxidative coupling of two adjacent aryl groups, resulting in formation of a cationic chiral IrIII complex bearing a CCCC-tetradentate ligand. A further 2e- oxidation allowed isolation of a high-valent tricationic complex with a triplet ground state. These results close a synthetic gap for carbon-ligated iridium complexes and demonstrate the electronic tuning potential of organic π ligands for unusual electronic properties.

2.
Inorg Chem ; 53(6): 2831-40, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24592940

RESUMO

New copper(I) complexes with coordinated 2-(4'-methyl)pyrimidinyl moieties were fabricated, and the isomerism of their pyrimidine ring linkage was investigated. The ligands bis[2-(diphenylphosphino)phenyl] ether (DPEPhos) and 4,4'-dimethyl-2,2'-bipyrimidine (dmbpm) were used to synthesize a heteroleptic copper(I) complex, [Cu(I)(DPEPhos)(dmbpm)]·BF4 (1·BF4), and a dinuclear copper(I) complex, [(Cu(I))2(DPEPhos)2(µ-dmbmp)](BF4)2 [2·(BF4)2]. The X-ray crystallographic structures, UV-vis absorption spectra, and luminescence properties of the complexes were analyzed. The thermodynamic and kinetic aspects of the isomerism of 1·BF4 were examined by variable-temperature NMR. Double pyrimidine ring rotation was found to be restricted sterically by the bulky DPEPhos ligands. This limited the number of the possible isomers: 1·BF4 showed only isomers with either one (io isomer) or both (oo isomer) of the two methyl groups positioned away from the copper center, while dinuclear 2·(BF4)2 was only found as a symmetric (io-io) isomer, with each of the two methyl groups positioned toward different copper centers. The addition of [Cu(MeCN)2(DPEPhos)] (3·BF4) allowed both isomers of 1·BF4 to form 2·(BF4)2, although at different rates and via different pathways, which were analyzed using time-dependent UV-vis spectroscopy. The io isomer dinucleated more quickly than the oo isomer owing to it being able to form 2·(BF4)2 (i) without bond dissociation and (ii) without a sterically congested ii configuration around the copper center. In contrast, oo-1·BF4 required (i) recombination of the bipyrimidine coordination bonds or (ii) formation of a product with higher thermodynamic energy, unsymmetric (ii-oo) 2·(BF4)2. These findings are interpreted as demonstrating a novel kinetic property: a conversion rate determined by pyrimidine ring inversion.

3.
Chem Commun (Camb) ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308315

RESUMO

Since copper has been extensively studied due to its unique ability to reduce carbon dioxide to hydrocarbons and alcohols, it tends to yield a mixture of products. Among various efforts to improve the selectivity and efficiency of this catalysis, the introduction of organic molecules and polymers on the copper/electrolyte interface has proven to be an effective and promising way to improve surface activity, considering the variation and precise designability of organic structures. The role of surface molecular modifiers, however, is not as simple as that in homogeneous catalysts, and an understanding of a wide scale of interactions from the atomic scale to the whole electrode structure is required. This feature article classifies those different scale interactions caused by organic modifiers on copper catalysts, together with the experimental support by in situ vibrational spectroscopy which directly observes surface species and events. Based on these recent understandings, novel fabrication methods of organic structures on copper catalysts are also discussed.

4.
Inorg Chem ; 52(1): 369-80, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23237520

RESUMO

We describe herein the effect of solvated ion pairing on the molecular motion of a pyrimidine ring coordinated on a copper center. We synthesized a series of heteroleptic copper(I) complex salts bearing an unsymmetrically substituted pyridylpyrimidine and a bulky diphosphine. Two rotational isomers of the complexes were found to coexist and interconvert in solution via intramolecular ligating atom exchange of the pyrimidine ring, where the notation of the inner (i-) and outer (o-) isomers describes the orientation of the pyrimidine ring relative to the copper center. The stability of the pyrimidine orientation was solvent- and counterion-sensitive in both 2·BF(4) {2(+) = [Cu(Mepypm)(dppp)](+), where Mepypm = 4-methyl-2-(2'-pyridyl)pyrimidine and dppp = 1,3-bis(diphenylphosphino)propane} and previously reported 1·BF(4), which possesses a bulky diphosphine ligand (1(+) = [Cu(Mepypm)(DPEphos)](+), where DPEphos = bis[2-(diphenylphosphino)phenyl] ether). Two rotational isomers of 2(+) were separately obtained as single crystals, and the structure of each isomer was examined in detail. Both the enthalpy and entropy values for the rotation of 2·BF(4) in CDCl(3) (ΔH = 6 kJ mol(-1); ΔS = 25 J K(-1) mol(-1)) were more positive than that tested under other conditions, such as in more polar solvents CD(2)Cl(2), acetone-d(6), and CD(3)CN. The reduced contact of the anion to the cation in a polar solvent seems to contribute to the enthalpy, entropy, and Gibbs free energy for rotational isomerization. This speculation based on solvated ion pairing was further confirmed by considering the rotational behavior of 2(+) with a bulky counterion, such as B(C(6)F(5))(4)(-). The findings are valuable for the design of molecular mechanical units that can be readily tuned via weak electrostatic interactions.


Assuntos
Cobre/química , Compostos Organometálicos/química , Pirimidinas/química , Cristalografia por Raios X , Íons/química , Cinética , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Rotação , Solventes/química , Termodinâmica
5.
Inorg Chem ; 52(15): 8962-70, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23883176

RESUMO

The redox properties of copper pyridylpyrimidine complexes, which undergo linkage isomerism based on pyrimidine ring rotation, were compared under different coordination environments. A newly synthesized compound, [Cu(Mepypm)(L(Mes))]BF4 (1·BF4, Mepypm = 4-methyl-2-(2'-pyridyl)pyrimidine, L(Mes) = 2,9-dimesityl-1,10-phenanthroline) was compared with previously reported complexes of [Cu(MepmMepy)(L(Mes))]BF4 (2·BF4, MepmMepy = 4-methyl-2-(6'-methyl-2'-pyridyl)pyrimidine), Cu(Mepypm)(DPEphos)]BF4 (3·BF4, DPEphos = bis[2-(diphenylphosphino)phenyl]ether), [Cu(Mepypm)(L(Anth))]BF4 (4·BF4, L(Anth) = 2,9-bis(9-anthryl)-1,10-phenanthroline), and [Cu(Mepypm)(L(Macro))]BF4 (5·BF4). Isomer ratios, isomerization dynamics, redox properties, and photoelectron conversion functions varied with the coordination structure. Methyl substituents on the 6-position of the pyridine moiety increased steric repulsion and contributed to quicker rotation, enhanced photoluminescence, and increased photodriven rotational isomerization.

6.
Phys Chem Chem Phys ; 15(26): 10549-65, 2013 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-23515403

RESUMO

This paper summarizes the results of our recent studies on the development of an artificial molecular rotor system that exhibits a change in redox potential and photoluminescence in response to external stimuli such as heat and photons. The molecular rotor is made of copper complexes bearing two bidentate ligands; the rotor is described here as [Cu(Rpmpy)(L(x))](+), where Rpmpy and L(x) are a 4-methyl-2-(2'-pyridyl)pyrimidine derivative and a bidendate ligand with bulky moieties, x, respectively, and the pyrimidine ring can rotate beside the copper centre while maintaining the pyridine-copper connection. The simplicity of the system enabled us to design the rotating motion more accurately. We expected that placing a wall in the rotational trajectory in the L(x) moiety would decrease the rate of the rotational dynamics. This slow rate of rotation was a key factor in achieving an external-stimuli-induced switching from thr equilibrium to metastable states. This switching was based on four stable isomers derived from the rotation and oxidation states, the behaviours of which were characterized for isolated copper(I) complexes using spectroscopic and electrochemical measurements at several temperatures. The steric shifts arising from the ring rotation were exploited not only to exhibit well-established oxidation-triggered motion but also to modulate the rest potential of the electrode, to manipulate the intramolecular electron transfer, to develop a redox potential switch based on photo-driven rotation, and to demonstrate the dual-luminescence behaviour.

7.
J Am Chem Soc ; 134(25): 10543-53, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22630816

RESUMO

We here describe the first metal complex system in which electronic signals can be repeatedly extracted by converting bistable states related to an intramolecular ligand rotational motion, which is fueled by visible light. The molecular structure for relating an electron transfer and a motion consists of a copper center and a coordinated unsymmetrically substituted pyrimidine derivative, whose rotational isomerization causes an electrochemical potential shift. To harness light energy effectively through metal-to-ligand charge transfer (MLCT) excitation, we prepared a simple copper(I) complex coordinated by a 4-methyl-2-(6'-methyl-2'-pyridyl)pyrimidine and a bulky diimine. The thermodynamic and kinetic parameters of redox and rotational reactions were analyzed by cyclic voltammograms at variable temperatures, by considering four stable isomers related to copper(II)/(I) states and rotational isomeric states. The key feature of this compound is that the rotation is frozen in the copper(I) state (rate constant for the rotation, k(Ii→o) = 10(-4) s(-1)) but is active in the copper(II) state (k(IIi→o) = 10(-1) s(-1)) at 203 K. The compound makes a bypass route to the isomeric metastable copper(I) state, via a tentative copper(II) state formed by photoelectron transfer (PET) in the presence of a redox mediator, decamethylferrocenium ion (DMFc(+)), or upon a partial oxidation of the complex. Light- and heat-driven rotation in the copper(I) state with a potential shift (ΔE°' = 0.14 V) was analyzed by electrochemical measurements of the complex in the solution state. The rotor could be reset to the initial state by heating, thereby completing the cycle and enabling repeated operation fueled by light energy. A significant redox potential shift associated with the copper(II)/(I) transition accompanied the rotation, thereby providing a new type of molecular signaling system.

8.
Inorg Chem ; 51(22): 12102-13, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-22646291

RESUMO

We prepared a novel class of ferrocene-dithiolene hybrid molecules, FcS4dt(Me)2 and FcS4dt[Pt((t)Bu2bpy)] (where FcS4dt indicates 2-(1,3-dithia[3]ferrocenophane-2-ylidene)-1,3-dithiole-4,5-dithiolate and (t)Bu2bpy indicates 4,4'-di-tert-butyl-2,2'-bipyridine), in which the ferrocene moiety was bound to the planar conjugated dithiolene skeleton via two sulfur atoms such that the cyclopentadienyl rings were perpendicular to the dithiolene backbone. The physical properties and electronic structures of the complexes and their oxidized species [FcS4dt(Me)2](•+) and [FcS4dt[Pt((t)Bu2bpy)]](•+) were investigated by means of single-crystal X-ray diffraction (XRD) analysis, cyclic voltammetry, electron paramagnetic resonance (EPR), and UV-vis near infrared (UV-vis-NIR) spectroscopy. The electron density distributions of the highest occupied molecular orbitals (HOMOs) of FcS4dt(Me)2 and FcS4dt[Pt((t)Bu2bpy)] differed remarkably in that the HOMO of the former was ferrocene-based whereas that of the latter was dithiolene-based. The differences in the HOMO distributions originated from the energy level of the dithiolene-based π-orbital in each of the complexes, which was controlled by changing R in FcS4dt(R)2 (R = Me for FcS4dt(Me)2; 2R = Pt((t)Bu2bpy) for FcS4dt[Pt((t)Bu2bpy)]). We succeeded in analyzing the crystal structure of [FcS4dt[Pt((t)Bu2bpy)]](F4TCNQ)·C6H14·CH2Cl2 (where F4TCNQ indicates 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane), which provided a rare example of the crystal structure of a [Pt(diimine)(dithiolate)](•+) ion-based complex. A comparison of the bond lengths in FcS4dt[Pt((t)Bu2bpy)] and [FcS4dt[Pt((t)Bu2bpy)]](•+) suggested that the latter complex displayed a conjugated dithiolene-based π-radical character. These considerations agreed well with the electronic structures calculated using density functional theory (DFT) and time-dependent(TD)-DFT methods. Significant electronic communication between the ferrocene and dithiolene moieties was detected for both [FcS4dt(Me)2](•+) and [FcS4dt[Pt((t)Bu2bpy)]](•+) in the appearance of an intramolecular charge transfer band, which was hardly observed for previously reported ferrocene-dithiolene hybrid molecules. The charge transfer direction was reversed between the two cations. The electron coupling parameter HAB and the potential energy curves of the oxidized complexes were estimated based on the classical two-state Marcus-Hush theory. These results suggest that FcS4dt-based metalladithiolenes can exhibit controllable electronic structures expressed as double-minimum potential energy curves.

9.
Inorg Chem ; 51(9): 5188-98, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22494502

RESUMO

We previously reported that an Fe(II) complex ligated by two (Z)-2,6-di(1H-pyrazol-1-yl)-4-styrylpyridine ligands (Z-H) presented a solid state ligand-driven light-induced spin change (LD-LISC) upon one-way Z-to-E photoisomerization, although modulation of the magnetism was trivial at ambient temperatures (Chem. Commun.2011, 47, 6846). Here, we report the synthesis of new derivatives of Z-H, Z-CN and Z-NO(2), in which electron-withdrawing cyano and nitro substituents are introduced at the 4-position of the styryl group to attain a more profound photomagnetism at ambient temperatures. Z-CN and Z-NO(2) undergo quantitative one-way Z-to-E photochromism upon excitation of the charge transfer band both in acetonitrile and in the solid state, similar to the behavior observed for Z-H. In solution, these substituents stabilized the low-spin (LS) states of Z-CN and Z-NO(2), and the behavior was quantitatively analyzed according to the Evans equation. The photomagnetic properties in the solid state, on the other hand, cannot be explained in terms of the substituent effect alone. Z-CN displayed photomagnetic properties almost identical to those of Z-H. Z-CN preferred the high-spin (HS) state at all temperatures tested, whereas photoirradiated Z-CN yielded a lower χ(M)T at ambient temperatures. The behavior of Z-NO(2) was counterintuitive, and the material displayed surprising photomagnetic properties in the solid state. Z-NO(2) occupied the LS state at low temperatures and underwent thermal spin crossover (SCO) with a T(1/2) of about 270 K. The photoirradiated Z-NO(2) displayed a higher value of χ(M)T and the modulation of χ(M)T exceeded that of Z-H or Z-CN. Z-NO(2)·acetone, in which acetone molecules were incorporated into the crystal lattice, further stabilized the LS state (T(1/2) > 300 K), thereby promoting large modulations of the χ(M)T values (87% at 273 K and 64% at 300 K) upon Z-to-E photoisomerization. Single crystal X-ray structure analysis revealed that structural factors played a vital role in the photomagnetic properties in the solid state. Z-H and Z-CN favored intermolecular π-π stacking among the ligand molecules. The coordination sphere around the Fe(II) nucleus was distorted, which stabilized the HS state. In contrast, Z-NO(2)·acetone was liberated from such intermolecular π-π stacking and coordination distortion, resulting in the stabilization of the LS state.

10.
Chem Commun (Camb) ; 58(58): 8053-8056, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35770695

RESUMO

Copper(I) oxide nanocubes were wrapped with an extremely uniform organic layer grown by self-controlled, Cu-mediated catalysis. This layer aided in retaining the initial cubic structure of the copper nanocubes during their use as a CO2 reduction electrocatalyst, resulting in high CO2 reduction selectivity by strong suppression of hydrogen evolution because of exclusion of water from the surface.

11.
Anal Sci ; 38(9): 1149-1152, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35788912

RESUMO

Nara sumi is a traditional Japanese craft that has been handed down in Nara since ancient times, and now plays a major role as a regional resource. Soot is considered to be one of the most important materials for its quality. However, the making process has been supported solely by the rule of thumb for craftsmen for many years, and there is very little scientific understanding of that. Therefore, we are focusing on the soot formation process in this study. Soot was collected from different heights in a rapeseed oil-fueled diffusion flame and analyzed by scanning electron microscopy and X-ray photoelectron spectroscopy. As a result, it was confirmed that the formation of the soot shape completes at the bottom of the outside of the flame and that the shape does not change thereafter. It was also confirmed that the oxidation of soot occurs at the bottom of the outside of the flame. These results are expected to contribute to the further scientific understanding of the soot formation process.


Assuntos
Fuligem , Difusão , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Óleo de Brassica napus
12.
Chemistry ; 17(50): 14010-9, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22084026

RESUMO

The donor-acceptor-donor (D-A-D) conjugated molecules 1,4-bis(diarylaminophenylethynyl)anthraquinone (1,4-Am(2)Aq) and 1,4-bis(ferrocenylethynyl)anthraquinone (1,4-Fc(2)Aq), undergo a double proton cyclization reaction with bis(trifluoromethanesulfone)imide acid (TFSIH) to yield 1,4-bis(diarylaminophenyl or ferrocenyl) dipyrylium salts [1,4-R(2)Pyl(2)](TFSI)(2) (R=Am or Fc) with novel planar pentacyclic structures similar to the aromatic benzo[e]pyrene-type skeleton. [1,4-Am(2)Pyl(2)](TFSI)(2) could be reduced to give the neutral molecule [1,4-Am(2)Pyl(2)](0), which is stable and maintains the benzo[e]pyrene-type skeleton. To the best of our knowledge, this is the first oxygen-atom-containing polycyclic aromatic hydrocarbon with 22 (4n+2) π-electrons. The obtained condensed-ring benzo[e]pyrene-type skeleton compounds show physical and chemical properties that are significantly different from those of [1,5-Am(2)Pyl(2)](TFSI)(2), which has a perylene-type skeleton.

13.
Inorg Chem ; 50(11): 4925-33, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21545149

RESUMO

Two new cyclic ligands were synthesized: a ligand with two trans-azobenzene moieties and one bipyridine moiety, trans(2)-oAB-O13, and a ligand with two trans-azobenzene moieties and two bipyridine moieties, trans(2)-oAB-bpy. Both ligands underwent reversible trans-cis isomerization at the azobenzene moieties. The mole ratios of the trans(2) form:trans-cis form:cis(2) form, evaluated by (1)H NMR spectroscopy of the photostationary states prepared by 1 h illumination, were 0.13:0.27:0.60 (365 nm irradiation) and 0.41:0.47:0.12 (436 nm irradiation) for oAB-O13, and 0.18:0.12:0.70 (365 nm irradiation) and 0.36:0.43:0.21 (436 nm irradiation) for oAB-bpy. When trans(2)-oAB-O13 was mixed with Cu(I), both the bipyridine units and the polyether chains coordinated to the copper center. Addition of a noncyclic bipyridine ligand, trans(2)-oAB-2OH, afforded a bis(bipyridine)copper(I) complex, [Cu(trans(2)-oAB-O13)(trans(2)-oAB-2OH)]BF(4). The bis(bipyridine) ligand, trans(2)-oAB-bpy, formed a 1:1 complex with Cu(I), [Cu(trans(2)-oAB-bpy)]BF(4). [Cu(cis(2)-oAB-bpy)]BF(4) did not undergo the ligand substitution reaction with a noncyclic ligand with two azobenzene moieties and one bipyridine moiety, oAB, whereas its thermal isomerization in the presence of oAB caused the formation of [Cu(trans(2)-oAB-bpy)(trans(2)-oAB)]BF(4), indicating that the isomerization and ligand exchange reactions synchronized via a conformational change of the cyclic ligand.

14.
Dalton Trans ; 50(16): 5659-5665, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33908964

RESUMO

Copper alkynyl complexes [CuAg3(C[triple bond, length as m-dash]CAr)3(PPh3)3]+ (Ar = Ph, p-C6H4Me), in which three Ag(PPh3) units are bound among three C[triple bond, length as m-dash]CAr arms of trigonal-planar [Cu(C[triple bond, length as m-dash]CAr)3]2-, were selected as a protecting unit to cover the metal core of an atomically precise core-shell-type cluster. First, the formation of the protecting unit through the reaction of Cu(NCMe)4(PF6) with Ag(C[triple bond, length as m-dash]CAr) and PPh3 in a 1 : 3 : 3 ratio was confirmed. The reaction gave dimeric [CuAg3(C[triple bond, length as m-dash]CAr)3(PPh3)3]22+, in which the two planar [CuAg3(C[triple bond, length as m-dash]CAr)3(PPh3)3]+ units were stacked. Next, core-shell-type clusters were synthesized by adding NaBH4 and Et4NX (X = Cl, Br) to a solution similar to that used to prepare the protecting unit. The trigonal-planar protecting units nicely formed core-shell-type Ag nanoclusters formulated as [Ag13H8X6{CuAg3(C[triple bond, length as m-dash]CAr)3(PPh3)3}4]3+ (X = Cl, Ar = p-C6H4Me; X = Br, Ar = p-C6H4Me; X = Br, Ar = Ph). Their crystal structures revealed that the four [CuAg3(C[triple bond, length as m-dash]CAr)3(PPh3)3]+ units are linked by six halogen ions to form a tetrahedral cage that accommodates a polyhydride-Ag cluster formulated as Ag13H85+. As a concrete proof of the existence of the polyhydride, deuterated analogs Ag13D85+ were synthesized and subsequently characterized by high-resolution electrospray-ionization mass spectrometry measurements.

15.
J Am Chem Soc ; 132(13): 4524-5, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20230027

RESUMO

Surface junction effects on the electron conduction of p-phenylene-bridged bis(terpyridine)iron oligomers terminated with a ferrocene moiety were quantitatively analyzed by employing three different surface-anchoring terpyridine ligands. The dependence of the electron-transfer rate constant for oxidation of the ferrocene moiety, k(et), on the distance between the electrode surface and the ferrocene moiety, x, showed that the attenuation factor, beta(d), which indicates the degree of reduction of k(et) with x, was approximately 0.018 in all cases. However, the absolute k(et) value depended strongly on both electronic and steric factors of the surface-anchoring ligand.


Assuntos
Compostos Ferrosos/química , Ouro/química , Condutividade Elétrica , Elétrons , Ligantes , Membranas Artificiais , Propriedades de Superfície
16.
J Am Chem Soc ; 132(35): 12472-9, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20718415

RESUMO

Protonation-induced intramolecular cyclization reactions of new donor (D)-acceptor (A) and D-A-D conjugated molecules 1-triarylaminoethynylanthraquinone (1-AmAq) and 1,5-bis(triarylaminoethynyl)anthraquinone (1,5-Am(2)Aq), respectively, were achieved. The former undergoes monoprotonation with bis(trifluoromethanesulfone)imide acid (TFSIH) to give pyrylium salt [1-AmPyl]TFSI, whereas the latter undergoes a novel double proton cyclization reaction to yield 1,5-bis(triarylamino)dipyrylium salt [1,5-Am(2)Pyl(2)](TFSI)(2) with a new pentacyclic backbone. This divalent cationic salt can be reduced to give the neutral species 2,8-bis(triarylamino)benzo[de]isochromeno[1,8-gh]chromene ([1,5-Am(2)Pyl(2)](0)), which maintains the planar pentacyclic backbone. The obtained condensed-ring compounds show unique optical, electrochemical, and magnetic properties due to the extremely narrow HOMO-LUMO gap. In particular, the dication [1,5-Am(2)Pyl(2)](2+) shows paramagnetic behavior with two spins centered on two triarylamine moieties through valence tautomerization with the pentacyclic backbone.


Assuntos
Antraquinonas/química , Magnetismo , Prótons , Piranos/química , Cristalografia por Raios X , Modelos Moleculares , Sais/química
17.
J Am Chem Soc ; 132(28): 9579-81, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20583794

RESUMO

We developed a new convertible copper(I) complex using 2-pyridyl-4-methylpyrimidine and diphosphine as ligands. This complex exhibited mechanical bistability based on the inversion motion of the pyrimidine ring, leading to dual luminescence behavior. The inversion dynamics was strongly dependent on temperature and solvent. Variable-temperature (1)H NMR spectra revealed that the two isomers interconverted in solution via ring inversion, and the motion was frozen below 200 K. The complex exhibited characteristic CT absorption and emission bands in solution. Emission lifetime measurements demonstrated that the emission could be deconvoluted into two components. The fast and slow components were assigned to the two isomers, the excited states of which were characterized by different structural relaxation process and/or additional solvent coordination properties. The emission properties of the two isomers differed not only in lifetime and wavelength but also in heat sensitivity. The molar ratio of the two isomers varied with the polarity of the solvent via electrostatic interactions with the counteranion. The rate of inversion was affected by solvent, suggesting that inversion was promoted by solvent coordination.

18.
J Am Chem Soc ; 131(40): 14198-9, 2009 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-19775087

RESUMO

We have constructed a single molecule system, consisting of a ferrocene-tethered copper complex, in which electron transfer between redox centers is triggered by molecular rotational motion. In the compound, an asymmetric methyl-substituted 2,2'-pyridylpyrimidine ligand, tethered to the ferrocene moiety, has two isomeric ring-inversion coordination conformations around the copper center. Both isomeric structures were characterized by X-ray crystallography. (1)H NMR and electrochemical measurements revealed that these isomers interconvert through rotation of the pyrimidine at room temperature, but the process is frozen below 233 K in the solution state. The two isomers undergo different redox processes, and the identity of the first oxidation center alternates between the copper center and ferrocene, as confirmed by chemical oxidation monitored by EPR and UV-vis absorption spectroscopy. Oxidation of the compound causes spontaneous isomerization of the pyrimidine due to the different relative stabilities of the isomers in the monovalent and divalent states. Oxidation in the motionless state at low temperatures extracts the first electron from the ferrocene center. When molecular motion is released by warming, the electron moves from the copper center to the ferrocene, leading to an enhancement of the copper(II) signal in the EPR spectrum. The synchronized motion/electron migration process was observed as a one-step UV-vis absorption spectral conversion.

19.
J Am Chem Soc ; 131(11): 3830-1, 2009 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-19254028

RESUMO

We have succeeded in constructing an electron-transfer gating system involving a copper complex, 1.BF(4), that is regulated by the rotational motion of a pyridylpyrimidine ligand. 4-Methyl-2-(2'-pyridyl)pyrimidine confined between two bulky groups underwent a dynamic process derived from pyrimidine-ring coordination inversion between inner and outer isomers, and these isomers interconverted with each other in solution with a barrier of 73 kJ mol(-1) at 293 K. As the ring-inversion process induces a change in redox potential on the copper center, electron transfer between 1(+) and the electrode can be gated through on/off control of the inversion by changing the temperature, resulting in a -0.14 V shift of the electrode potential.

20.
J Am Chem Soc ; 131(34): 12112-24, 2009 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-19655749

RESUMO

1-Ferrocenylethynylanthraquinone (1-FcAq), which is a donor (D)-acceptor (A) conjugated compound consisting of a ferrocene (Fc) acting as a donor, an anthraquinone (Aq) acting as an acceptor, and an ethynyl linker, undergoes a cyclocondensation reaction with strong organic acid, and forms 2-ferrocenyloxodihydrodibenzochromenylium salts ([1-FcPyl](+)X(-) where X = TFSI, TfO, PF(6), and BF(4)). [1-FcPyl](+) were also characterized as conjugated donor-acceptor compounds, and electrochemical properties, UV-vis absorption spectra, single-crystal X-ray analysis, and TD-DFT calculations have indicated that the LUMO level of [1-FcPyl](+) is lower than that of 1-FcAq because of the much larger pi-conjugated system in [1-FcPyl](+). Variable-temperature Mossbauer spectroscopy (12-300 K) showed that Fe(II) was dominant for the TFSI(-), PF(6)(-), and BF(4)(-) salts of [1-FcPyl](+); although the Fe(III) species was also observed at all temperature ranges, the molar ratio of Fe(III) species increased at higher temperatures in the TFSI(-) and PF(6)(-) salts. This finding indicates that valence tautomerization (VT) between 1-FcPyl(+) and 1-Fc(+)Pyl occurs in the solid state of the TFSI(-) and the PF(6)(-) salts, but not in the BF(4)(-) salt. Variable-temperature (3.5-310 K) IR spectroscopy showed that the frequencies of the skeletal vibration of the ferrocene moiety decreased with increasing temperature in the TFSI(-) and PF(6)(-) salts, indicating the development of a ferrocenium-like character. The precision of the bond lengths of the [1-FcPyl](+) moiety (0.003-0.004 A) determined by single-crystal X-ray analysis (113 and 273 K) is not sufficient to demonstrate the effect of the counterion on VT. The dihedral angle between the ferrocene and the pyrylium moieties in the BF(4)(-) salt (11.25(15) degrees) is larger than that in the TFSI(-) (6.63(12) degrees) and PF(6)(-) (9.55(15) degrees) salts. Furthermore, the planarity of the acceptor moiety (estimated from the dihedral angle between Ph1 and Ph2) is lower in the BF(4)(-) salt compared with that of other salts. These increased dihedral angles might cause a weaker D-A interaction and a destabilization of the acceptor moiety (i.e., raising a LUMO level), leading to lower stability of the Fe(III) (1-Fc(+)Pyl) species. Variable-temperature X-ray powder diffraction (VT XRPD, 100-300 K) revealed that the temperature dependence of the Fe-P distance in the PF(6)(-) salt was smaller than that of the Fe-B distance in the BF(4)(-) salt. Our interpretation of this phenomenon is that the molar ratio of the Fe(III) species is increased in the PF(6)(-) salt, and that the Coulombic force between the ferrocene moiety and PF(6)(-) anion increases, preventing an increase in the Fe-P distance. This indicates that the electrostatic interaction between the [1-FcPyl](+) moiety and the counteranion may affect the occurrence of VT.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa