Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(22): e202217196, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36876900

RESUMO

Heterogeneous light-driven catalysis is a cornerstone of sustainable energy conversion. Most catalytic studies focus on bulk analyses of the hydrogen and oxygen evolved, which impede the correlation of matrix heterogeneities, molecular features, and bulk reactivity. Here, we report studies of a heterogenized catalyst/photosensitizer system using a polyoxometalate water oxidation catalyst and a model, molecular photosensitizer that were co-immobilized within a nanoporous block copolymer membrane. Via operando scanning electrochemical microscopy (SECM), light-induced oxygen evolution was determined using sodium peroxodisulfate (Na2 S2 O8 ) as sacrificial electron acceptor. Ex situ element analyses provided spatially resolved information on the local concentration and distribution of the molecular components. Infrared attenuated total reflection (IR-ATR) studies of the modified membranes showed no degradation of the water oxidation catalyst under the reported light-driven conditions.

2.
Chemistry ; 27(68): 17078-17086, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34523763

RESUMO

We report IR and UV/Vis spectroscopic signatures that allow discriminating between the oxidation states of the manganese-based water oxidation catalyst [(Mn4 O4 )(V4 O13 )(OAc)3 ]3- . Simulated IR spectra show that V=O stretching vibrations in the 900-1000 cm-1 region shift consistently by about 20 cm-1 per oxidation equivalent. Multiple bands in the 1450-1550 cm-1 region also change systematically upon oxidation/reduction. The computed UV/Vis spectra predict that the spectral range above 350 nm is characteristic of the managanese-oxo cubane oxidation state, whereas transitions at higher energy are due to the vanadate ligand. The presence of absorption signals above 680 nm is indicative of the presence of MnIII atoms. Spectroelectrochemical measurements of the oxidation from [Mn 2 III Mn 2 IV ] to [Mn 4 IV ] showed that the change in oxidation state can indeed be tracked by both IR and UV/Vis spectroscopy.


Assuntos
Manganês , Água , Catálise , Oxirredução , Oxigênio
3.
Chemistry ; 27(68): 16896-16903, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34713512

RESUMO

Cobaloximes are promising, earth-abundant catalysts for the light-driven hydrogen evolution reaction (HER). Typically, these cobalt(III) complexes are prepared in situ or employed in their neutral form, for example, [Co(dmgH)2 (py)Cl], even though related complex salts have been reported previously and could, in principle, offer improved catalytic activity as well as more efficient immobilization on solid support. Herein, we report an interdisciplinary investigation into complex salts [Co(dmgH)2 (py)2 ]+ [Co(dmgBPh2 )2 Cl2 ]- , TBA + [ Co ( dmgBPh 2 ) 2 Cl 2 ] - and [Co(dmgH)2 (py)2 ]+ BArF- . We describe their strategic syntheses from the commercially available complex [Co(dmgH)2 (py)Cl] and demonstrate that these double and single complex salts are potent catalysts for the light-driven HER. We also show that scanning electrochemical cell microscopy can be used to deposit arrays of catalysts [Co(dmgH)2 (py)2 ]+ [Co(dmgBPh2 )2 Cl2 ]- , TBA + [ Co ( dmgBPh 2 ) 2 Cl 2 ] - and [Co(dmgH)2 (py)Cl] on supported and free-standing amino-terminated ∼1-nm-thick carbon nanomembranes (CNMs). Photocatalytic H2 evolution at such arrays was quantified with Pd microsensors by scanning electrochemical microscopy, thus providing a new approach for catalytic evaluation and opening up novel routes for the creation and analysis of "designer catalyst arrays", nanoprinted in a desired pattern on a solid support.

5.
Nanomaterials (Basel) ; 11(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34443798

RESUMO

Polydopamine (PDA) is a synthetic eumelanin polymer which is, to date, mostly obtained by dip coating processes. In this contribution, we evaluate the physical and electrochemical properties of electrochemically deposited PDA films obtained by cyclic voltammetry or pulsed deposition. The obtained PDA thin films are investigated with respect to their electrochemical properties, i.e., electron transfer (ET) kinetics and charge transfer resistance using scanning electrochemical microscopy and electrochemical impedance spectroscopy, and their nanomechanical properties, i.e., Young's modulus and adhesion forces at varying experimental conditions, such as applied potential or pH value of the medium using atomic force microscopy. In particular, the ET behavior at different pH values has not to date been investigated in detail for electrodeposited PDA thin films, which is of particular interest for a multitude of applications. Adhesion forces strongly depend on applied potential and surrounding pH value. Moreover, force spectroscopic measurements reveal a significantly higher percentage of polymeric character compared to films obtained by dip coating. Additionally, distinct differences between the two depositions methods are observed, which indicate that the pulse deposition process leads to denser, more cross-linked films.

6.
Chem Sci ; 12(39): 12918-12927, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34745522

RESUMO

Despite their technological importance for water splitting, the reaction mechanisms of most water oxidation catalysts (WOCs) are poorly understood. This paper combines theoretical and experimental methods to reveal mechanistic insights into the reactivity of the highly active molecular manganese vanadium oxide WOC [Mn4V4O17(OAc)3]3- in aqueous acetonitrile solutions. Using density functional theory together with electrochemistry and IR-spectroscopy, we propose a sequential three-step activation mechanism including a one-electron oxidation of the catalyst from [Mn2 3+Mn2 4+] to [Mn3+Mn3 4+], acetate-to-water ligand exchange, and a second one-electron oxidation from [Mn3+Mn3 4+] to [Mn4 4+]. Analysis of several plausible ligand exchange pathways shows that nucleophilic attack of water molecules along the Jahn-Teller axis of the Mn3+ centers leads to significantly lower activation barriers compared with attack at Mn4+ centers. Deprotonation of one water ligand by the leaving acetate group leads to the formation of the activated species [Mn4V4O17(OAc)2(H2O)(OH)]- featuring one H2O and one OH ligand. Redox potentials based on the computed intermediates are in excellent agreement with electrochemical measurements at various solvent compositions. This intricate interplay between redox chemistry and ligand exchange controls the formation of the catalytically active species. These results provide key reactivity information essential to further study bio-inspired molecular WOCs and solid-state manganese oxide catalysts.

7.
ChemSusChem ; 14(10): 2170-2179, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33576576

RESUMO

In spite of the enormous promise that polymeric carbon nitride (PCN) materials hold for various applications, the fabrication of high-quality, binder-free PCN films and electrodes has been a largely elusive goal to date. Here, we tackle this challenge by devising, for the first time, a water-based sol-gel approach that enables facile preparation of thin films based on poly(heptazine imide) (PHI), a polymer belonging to the PCN family. The sol-gel process capitalizes on the use of a water-soluble PHI precursor that allows formation of a non-covalent hydrogel. The hydrogel can be deposited on conductive substrates, resulting in formation of mechanically stable polymeric thin layers. The resulting photoanodes exhibit unprecedented photoelectrochemical (PEC) performance in alcohol reforming and highly selective (∼100 %) conversions with very high photocurrents (>0.25 mA cm-2 under 2 sun) down to <0 V vs. RHE. This enables even effective PEC operation under zero-bias conditions and represents the very first example of a 'soft matter'-based PEC system capable of bias-free photoreforming. The robust binder-free films derived from sol-gel processing of water-soluble PCN thus constitute a new paradigm for high-performance 'soft matter' photoelectrocatalytic systems and pave the way for further applications in which high-quality PCN films are required.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa