RESUMO
BACKGROUND: Radioguided surgery (RGS) has recently emerged as a valuable new tool in the management of recurrent prostate cancer (PCa). After preoperative injection of a 99mTc-labeled prostate-specific membrane antigen (PSMA) inhibitor, radioguided intraoperative identification and resection of lesions is facilitated by means of suitable γ-probes. First clinical experiences show the feasibility of RGS and suggest superiority over conventional lymph node dissection in recurrent PCa. However, commonly used [99mTc]Tc-PSMA-I&S exhibits slow whole-body clearance, thus hampering optimal tumor-to-background ratios (TBR) during surgery. We therefore aimed to develop novel 99mTc-labeled, PSMA-targeted radioligands with optimized pharmacokinetic profile to increase TBR at the time of surgery. METHODS: Three 99mTc-labeled N4-PSMA ligands were preclinically evaluated and compared to [99mTc]Tc-PSMA-I&S. PSMA affinity (IC50) and internalization were determined on LNCaP cells. Lipophilicity was assessed by means of the distribution coefficient logD7.4 and an ultrafiltration method was used to determine binding to human plasma proteins. Biodistribution studies and static µSPECT/CT-imaging were performed at 6 h p.i. on LNCaP tumor-bearing CB17-SCID mice. RESULTS: The novel N4-PSMA tracers were readily labeled with [99mTc]TcO4- with RCP > 95%. Comparable and high PSMA affinity was observed for all [99mTc]Tc-N4-PSMA-ligands. The ligands showed variable binding to human plasma and medium to low lipophilicity (logD7.4 - 2.6 to - 3.4), both consistently decreased compared to [99mTc]Tc-PSMA-I&S. Biodistribution studies revealed comparable tumor uptake among all [99mTc]Tc-N4-PSMA-ligands and [99mTc]Tc-PSMA-I&S, while clearance from most organs was superior for the novel tracers. Accordingly, increased TBR were achieved. [99mTc]Tc-N4-PSMA-12 showed higher TBR than [99mTc]Tc-PSMA-I&S for blood and all evaluated tissue. In addition, a procedure suitable for routine clinical production of [99mTc]Tc-N4-PSMA-12 was established. Labeling with 553 ± 187 MBq was achieved with RCP of 98.5 ± 0.6% (n = 10). CONCLUSION: High tumor accumulation and favorable clearance from blood and non-target tissue make [99mTc]Tc-N4-PSMA-12 an attractive tracer for RGS, possibly superior to currently established [99mTc]Tc-PSMA-I&S. Its GMP-production according to a method presented here and first clinical investigations with this novel radioligand is highly recommended.
RESUMO
A meticulously adjusted pharmacokinetic profile and especially fine-tuned blood clearance kinetics are key characteristics of therapeutic radiopharmaceuticals. We, therefore, aimed to develop a method that allowed the estimation of blood clearance kinetics in vitro. For this purpose, 177Lu-labeled PSMA radioligands were subjected to a SEC column with human serum albumin (HSA) dissolved in a mobile phase. The HSA-mediated retention time of each PSMA ligand generated by this novel 'albumin-mediated size exclusion chromatography' (AMSEC) was converted to a ligand-specific apparent molecular weight (MWapp), and a normalization accounting for unspecific interactions between individual radioligands and the SEC column matrix was applied. The resulting normalized MWapp,norm. could serve to estimate the blood clearance of renally excreted radioligands by means of their influence on the highly size-selective process of glomerular filtration (GF). Based on the correlation between MW and the glomerular sieving coefficients (GSCs) of a set of plasma proteins, GSCcalc values were calculated to assess the relative differences in the expected GF/blood clearance kinetics in vivo and to select lead candidates among the evaluated radioligands. Significant differences in the MWapp,norm. and GSCcalc values, even for stereoisomers, were found, indicating that AMSEC might be a valuable and high-resolution tool for the preclinical selection of therapeutic lead compounds for clinical translation.
RESUMO
The prostate-specific membrane antigen (PSMA)-targeted radiohybrid (rh) ligand [177Lu]Lu-rhPSMA-7.3 has recently been assessed in a pretherapeutic dosimetry study on prostate cancer patients. In comparison to [177Lu]Lu-PSMA I&T, application of [177Lu]Lu-rhPSMA-7.3 resulted in a significantly improved tumor dose but also higher kidney accumulation. Although rhPSMA-7.3 has been initially selected as the lead compound for diagnostic application based on the characterization of its gallium complex, a systematic comparison of the most promising 177Lu-labeled rhPSMA ligands is still missing. Thus, this study aimed to identify the rhPSMA ligand with the most favorable pharmacokinetics for 177Lu-radioligand therapy. Methods: The 4 isomers of [177Lu]Lu-rhPSMA-7 (namely [177Lu]Lu-rhPSMA-7.1, -7.2, -7.3, and -7.4), along with the novel radiohybrid ligands [177Lu]Lu-rhPSMA-10.1 and -10.2, were compared with the state-of-the-art compounds [177Lu]Lu-PSMA I&T and [177Lu]Lu-PSMA-617. The comparative evaluation comprised affinity studies (half-maximal inhibitory concentration) and internalization experiments on LNCaP cells, as well as lipophilicity measurements. In addition, we determined the apparent molecular weight (AMW) of each tracer as a parameter for human serum albumin (HSA) binding. Biodistribution studies and small-animal SPECT imaging were performed on LNCaP-tumor bearing mice at 24 h after injection. Results: 177Lu labeling of the radiohybrids was performed according to the established procedures for the currently established PSMA-targeted ligands. All ligands showed potent binding to PSMA-expressing LNCaP cells, with affinities in the low nanomolar range and high internalization rates. Surprisingly, the most pronounced differences regarded the HSA-related AMW. Although [177Lu]Lu-rhPSMA-7 isomers demonstrated the highest AMW and thus strongest HSA interactions, [177Lu]Lu-rhPSMA-10.1 showed an AMW lower than for [177Lu]Lu-rhPSMA-7.3 but higher than for the 177Lu-labeled references PSMA I&T and PSMA-617. In biodistribution studies, [177Lu]Lu-rhPSMA-10.1 exhibited the lowest kidney uptake and fastest excretion from the blood pool of all rhPSMA ligands while preserving a high tumor accumulation. Conclusion: Clinical investigation of [177Lu]Lu-rhPSMA-10.1 is highly warranted to determine whether the favorable pharmacokinetics observed in mice will also result in high tumor uptake and decreased absorbed dose to kidneys and other nontarget tissues in patients.
Assuntos
Gálio , Neoplasias da Próstata , Animais , Humanos , Ligantes , Masculino , Camundongos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/radioterapia , Albumina Sérica Humana , Distribuição Tecidual , Ureia/análogos & derivadosRESUMO
Current radiolabeled gastrin-releasing peptide receptor (GRPR) ligands usually suffer from high accumulation in GRPR-positive organs (pancreas, stomach), limiting tumor-to-background contrast in the abdomen. In novel N4-bombesin derivatives this was addressed by substitutions at the Gln7-Trp8 site within the MJ9 peptide (H-Pip5-phe6-Gln7-Trp8-Ala9-Val10-Gly11-His12-Sta13-Leu14-NH2) either by homoserine (Hse7), ß-(3-benzothienyl) alanine (Bta8) or α-methyl tryptophan (α-Me-Trp8), with the aim of optimizing pharmacokinetics. We prepared and characterized the peptide conjugates 6-carboxy-1,4,8,11-tetraazaundecane (N4)-asp-MJ9, N4-asp-[Bta8]MJ9, N4-[Hse7]MJ9 and N4-[α-Me-Trp8]MJ9, and evaluated these compounds in vitro (GRPR affinity via IC50,inverse; internalization; lipophilicity via logD7.4) and in vivo (biodistribution and µSPECT/CT studies at 1 h post injection (p.i.) in PC-3 tumor-bearing CB17-SCID mice). 99mTc-labeling resulted in radiochemical yields (RCYs) > 95%. All 99mTc-labeled MJ9 analogues showed comparable or higher GRPR affinity than the external reference [99mTc]Tc-Demobesin 4. Receptor-bound fractions were noticeably higher than that of the reference. Despite a slightly enhanced lipophilicity, all novel MJ9 derivatives revealed improved in vivo pharmacokinetics compared to the reference. The Bta8-modified ligand revealed the most favorable tumor-to-abdomen contrast at 1 h p.i. Substitutions at the Gln7-Trp8 site within GRPR ligands hold great potential to modify pharmacokinetics for improved imaging.