Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
PLoS Pathog ; 18(5): e1010150, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35536868

RESUMO

Most of our understanding of the ecology and evolution of avian influenza A virus (AIV) in wild birds is derived from studies conducted in the northern hemisphere on waterfowl, with a substantial bias towards dabbling ducks. However, relevant environmental conditions and patterns of avian migration and reproduction are substantially different in the southern hemisphere. Through the sequencing and analysis of 333 unique AIV genomes collected from wild birds collected over 15 years we show that Australia is a global sink for AIV diversity and not integrally linked with the Eurasian gene pool. Rather, AIV are infrequently introduced to Australia, followed by decades of isolated circulation and eventual extinction. The number of co-circulating viral lineages varies per subtype. AIV haemagglutinin (HA) subtypes that are rarely identified at duck-centric study sites (H8-12) had more detected introductions and contemporary co-circulating lineages in Australia. Combined with a lack of duck migration beyond the Australian-Papuan region, these findings suggest introductions by long-distance migratory shorebirds. In addition, on the available data we found no evidence of directional or consistent patterns in virus movement across the Australian continent. This feature corresponds to patterns of bird movement, whereby waterfowl have nomadic and erratic rainfall-dependant distributions rather than consistent intra-continental migratory routes. Finally, we detected high levels of virus gene segment reassortment, with a high diversity of AIV genome constellations across years and locations. These data, in addition to those from other studies in Africa and South America, clearly show that patterns of AIV dynamics in the Southern Hemisphere are distinct from those in the temperate north.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Animais Selvagens , Austrália/epidemiologia , Aves , Patos , Variação Genética , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Filogenia
2.
J Virol ; 92(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29875251

RESUMO

Global swine populations infected with influenza A viruses pose a persistent pandemic risk. With the exception of a few countries, our understanding of the genetic diversity of swine influenza viruses is limited, hampering control measures and pandemic risk assessment. Here we report the genomic characteristics and evolutionary history of influenza A viruses isolated in Australia from 2012 to 2016 from two geographically isolated swine populations in the states of Queensland and Western Australia. Phylogenetic analysis with an expansive human and swine influenza virus data set comprising >40,000 sequences sampled globally revealed evidence of the pervasive introduction and long-term establishment of gene segments derived from several human influenza viruses of past seasons, including the H1N1/1977, H1N1/1995, H3N2/1968, and H3N2/2003, and the H1N1 2009 pandemic (H1N1pdm09) influenza A viruses, and a genotype that contained gene segments derived from the past three pandemics (1968, reemerged 1977, and 2009). Of the six human-derived gene lineages, only one, comprising two viruses isolated in Queensland during 2012, was closely related to swine viruses detected from other regions, indicating a previously undetected circulation of Australian swine lineages for approximately 3 to 44 years. Although the date of introduction of these lineages into Australian swine populations could not be accurately ascertained, we found evidence of sustained transmission of two lineages in swine from 2012 to 2016. The continued detection of human-origin influenza virus lineages in swine over several decades with little or unpredictable antigenic drift indicates that isolated swine populations can act as antigenic archives of human influenza viruses, raising the risk of reemergence in humans when sufficient susceptible populations arise.IMPORTANCE We describe the evolutionary origins and antigenic properties of influenza A viruses isolated from two separate Australian swine populations from 2012 to 2016, showing that these viruses are distinct from each other and from those isolated from swine globally. Whole-genome sequencing of virus isolates revealed a high genotypic diversity that had been generated exclusively through the introduction and establishment of human influenza viruses that circulated in past seasons. We detected six reassortants with gene segments derived from human H1N1/H1N1pdm09 and various human H3N2 viruses that circulated during various periods since 1968. We also found that these swine viruses were not related to swine viruses collected elsewhere, indicating independent circulation. The detection of unique lineages and genotypes in Australia suggests that isolated swine populations that are sufficiently large can sustain influenza virus for extensive periods; we show direct evidence of a sustained transmission for at least 4 years between 2012 and 2016.


Assuntos
Variação Genética , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/virologia , Suínos/virologia , Animais , Genótipo , Humanos , Vírus da Influenza A/genética , Epidemiologia Molecular , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Filogenia , Queensland/epidemiologia , Doenças dos Suínos/epidemiologia , Austrália Ocidental/epidemiologia
3.
Electrophoresis ; 37(17-18): 2368-75, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27296618

RESUMO

A new portable CE instrument is presented. The instrument features the concurrent separation of anions and cations in parallel channels. Each channel has a separate buffer container to allow independent optimization of separation conditions. The microfluidics circuit is based on off-the-shelf parts, and can be easily replicated; only four valves are present in the design. The system employs a miniature automated syringe pump, which can apply both positive and negative pressures (-100 to 800 kPa). The application of negative pressure allows a semi-automatic mode of operation for introducing volume-limited samples. The separations are performed in a thermostatted compartment for improved reproducibility in field conditions. The instrument has a compact design, with all components, save for batteries and power supplies, arranged in a briefcase with dimensions of 52 × 34 × 18 cm and a weight of less than 15 kg. The system runs automatically and is controlled by a purpose-made graphical user interface on a connected computer. For demonstration, the system was successfully employed for the concurrent separation and analysis of inorganic cations and anions in sediment porewater samples from Lake Baldegg in Switzerland and of metal ions in a sample from the tailing pond of an abandoned mine in Argentina.


Assuntos
Eletroforese Capilar/instrumentação , Automação , Calibragem , Microfluídica/instrumentação , Reprodutibilidade dos Testes , Interface Usuário-Computador
4.
Proc Biol Sci ; 282(1798): 20142124, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25392474

RESUMO

Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility.


Assuntos
Quirópteros/virologia , Modelos Biológicos , Infecções por Vírus de RNA/transmissão , Vírus de RNA/fisiologia , Zoonoses/transmissão , Animais , Humanos , Queensland , Infecções por Vírus de RNA/virologia , Vírus de RNA/isolamento & purificação , Zoonoses/virologia
5.
Curr Top Microbiol Immunol ; 359: 11-23, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22476530

RESUMO

Hendra virus, a novel and fatally zoonotic member of the family Paramyxoviridae, was first described in Australia in 1994. Periodic spillover from its natural host (fruit bats) results in catastrophic disease in horses and occasionally the subsequent infection of humans. Prior to 2011, 14 equine incidents involving seven human cases (four fatal) were recorded. The year 2011 saw a dramatic departure from the sporadic incidents of the previous 16 years, with a cluster of 18 incidents in a single 3-month period. The fundamental difference in 2011 was the total number of incidents, the geographic clustering, and the expanded geographic range. The 2011 cluster more than doubled the total number of incidents previously reported, and poses the possibility of a new HeV infection paradigm. Epidemiologic evidence suggests that compelling additional host and/or environmental factors were at play.


Assuntos
Surtos de Doenças , Vírus Hendra/patogenicidade , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/veterinária , Doenças dos Cavalos/epidemiologia , Zoonoses/epidemiologia , Animais , Austrália/epidemiologia , Quirópteros/virologia , Ecossistema , Vírus Hendra/isolamento & purificação , Infecções por Henipavirus/virologia , Doenças dos Cavalos/virologia , Cavalos/virologia , Humanos , Filogeografia , Zoonoses/virologia
6.
Zoonoses Public Health ; 69(7): 835-842, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35785471

RESUMO

Zoonotic salmonellosis can occur either through direct contact with an infected animal or through indirect contact, such as exposure to an infected animal's contaminated environment. Between May and August 2020, a multi-jurisdictional outbreak of Salmonella Typhimurium (STm) infection due to zoonotic transmission was investigated in Australia. In total, 38 outbreak cases of STm with a median age of 5 years were reported. Epidemiological investigation showed contact with live poultry to be a common risk factor with most cases recently purchasing one-week old chicks from produce/pet stores. Traceback investigation of cases identified 25 product/pet stores of which 18 were linked to a single poultry breeder farm. On farm environmental sampling identified the same STm genotype as identified in cases. Whole genome sequencing of both environmental and human outbreak isolates found them to be highly related by phylogenetic analysis. This investigation describes the first documented widespread zoonotic salmonellosis outbreak in Australia attributed to backyard poultry exposure and identified potential risk factors and prevention and control measures for future outbreaks. Prevention of future outbreaks will require an integrated One Health approach involving the poultry industry, produce/pet store owners, animal healthcare providers, public health and veterinary health agencies and the public.


Assuntos
Intoxicação Alimentar por Salmonella , Salmonelose Animal , Animais , Austrália/epidemiologia , Surtos de Doenças/prevenção & controle , Humanos , Filogenia , Aves Domésticas , Intoxicação Alimentar por Salmonella/epidemiologia , Intoxicação Alimentar por Salmonella/veterinária , Salmonelose Animal/epidemiologia , Salmonella typhimurium
7.
Emerg Infect Dis ; 16(2): 338-40, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20113576

RESUMO

To determine the epidemiologic and clinical features of a 2008 outbreak of Hendra virus infection in a veterinary clinic in Australia, we investigated the equine case-series. Four of 5 infected horses died, as did 1 of 2 infected staff members. Clinical manifestation in horses was predominantly neurologic. Preclinical transmission appears likely.


Assuntos
Surtos de Doenças/veterinária , Vírus Hendra/isolamento & purificação , Infecções por Henipavirus/veterinária , Doenças dos Cavalos/mortalidade , Animais , Austrália/epidemiologia , Infecções por Henipavirus/mortalidade , Doenças dos Cavalos/virologia , Cavalos , Humanos , Imuno-Histoquímica , Mortalidade
8.
Prev Vet Med ; 179: 104988, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32339964

RESUMO

Hendra virus (HeV) is an emerging bat-borne virus endemic in Australia that can be transmitted from horses to humans and has a high fatality rate for horses and people. Controversy surrounding HeV risk mitigation measures have strained the veterinarian-horse owner relationship. This study aimed to characterise the veterinarian-horse owner relationship in general and also in the context of HeV by analysing data derived from the 'Horse Owners and Hendra Virus: A Longitudinal Study to Evaluate Risk' (HHALTER) study. Australian horse owners were recruited via emails, social media and word-of-mouth for a series of five surveys that were administered online at six-monthly intervals over a two-year period to capture baseline knowledge, attitudes and practices of horse owners regarding HeV and any changes over time. In the current study, descriptive analyses of information sources were performed to understand the use of veterinarians as a HeV information source (Surveys 1 and 5; n = 1195 and n = 617). Ordinal logistic regression analyses were conducted to determine factors associated with the frequency of horse owner contact with a veterinarian (Survey 3; n = 636). This study found a relative increase over the study period in the proportion of horse owners who had used veterinarians as HeV information source in the last 12 months (from 51.9% to 88.3%). Owning more horses, being older, having a 'duty of care' for other people working with horses and deriving the main income from horse related business were factors associated with more frequent veterinary contact. Results suggest that traditional information sources such as workshops, information packs and risk training are likely to be used by horse owners. Smart phone applications should be considered for use in the future and require further investigation for horse health communication. The findings of this study may be helpful in optimising strategies for horse health information delivery.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Vírus Hendra/fisiologia , Infecções por Henipavirus/veterinária , Doenças dos Cavalos/psicologia , Disseminação de Informação , Propriedade , Médicos Veterinários/psicologia , Adulto , Idoso , Animais , Austrália , Feminino , Infecções por Henipavirus/psicologia , Cavalos , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
Transbound Emerg Dis ; 65(6): 1909-1919, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30194915

RESUMO

In this survey study, the networks among poultry farms and related poultry enterprises in two counties in China (Feixi County in Anhui Province and Beizhen city in Liaoning Province) were analysed and evaluated focusing on the connectivity of contacts, movements, and potential pathogen transmission. The Feixi County poultry production network exhibited greater connectivity, which incorporated approximately 94% of the farms interviewed in a major component (a set of connected farms not linked with each other), mainly due to linkages of backyard farms through local produce stores and individual agents, whilst the Beizhen City network was more fragmented owing to independent in-house operations (from breed, raise, to slaughter and process) of a few large companies, with multiple smaller components. A range of factors influencing the contacts/movements among farms (act as bridges) were identified in this study. Ability to predict the pathway with the network characteristics on the basis of the factors, such as entity type and geographic location, is useful for developing risk-based approaches for disease prevention, surveillance, early detection, and effective controlling.


Assuntos
Influenza Aviária/transmissão , Doenças das Aves Domésticas/transmissão , Rede Social , Animais , China/epidemiologia , Fazendas , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia , Inquéritos e Questionários , Zoonoses/virologia
10.
Prev Vet Med ; 148: 28-36, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29157371

RESUMO

In recent years, outbreaks of exotic as well as newly emerging infectious diseases have highlighted the importance of biosecurity for the Australian horse industry. As the first potentially fatal zoonosis transmissible from horses to humans in Australia, Hendra virus has emphasised the need to incorporate sound hygiene and general biosecurity practices into day-to-day horse management. Recommended measures are widely publicised, but implementation is at the discretion of the individual owner. This cross-sectional study aimed to determine current levels of biosecurity of horse owners and to identify factors influencing the uptake of practices utilising data from an online survey. Level of biosecurity (low, medium, high), as determined by horse owners' responses to a set of questions on the frequency of various biosecurity practices performed around healthy (9 items) and sick horses (10 items), was used as a composite outcome variable in ordinal logistic regression analyses. The majority of horse owners surveyed were female (90%), from the states of Queensland (45%) or New South Wales (37%), and were involved in either mainly competitive/equestrian sports (37%) or recreational horse activities (35%). Seventy-five percent of owners indicated that they follow at least one-third of the recommended practices regularly when handling their horses, resulting in medium to high levels of biosecurity. Main factors associated with a higher level of biosecurity were high self-rated standard of biosecurity, access to personal protective equipment, absence of flying foxes in the local area, a good sense of control over Hendra virus risk, likelihood of discussing a sick horse with a veterinarian and likelihood of suspecting Hendra virus in a sick horse. Comparison of the outcome variable with the self-rated standard of biosecurity showed that over- as well as underestimation occurred. This highlights the need for continuous communication and education to enhance awareness and understanding of what biosecurity is and how it aligns with good horsemanship. Overall, strengthened biosecurity practices will help to improve animal as well as human health and increase preparedness for future disease outbreaks.


Assuntos
Comunicação em Saúde , Conhecimentos, Atitudes e Prática em Saúde , Vírus Hendra/fisiologia , Infecções por Henipavirus/veterinária , Doenças dos Cavalos/prevenção & controle , Zoonoses/prevenção & controle , Animais , Austrália , Estudos Transversais , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/psicologia , Infecções por Henipavirus/virologia , Doenças dos Cavalos/psicologia , Doenças dos Cavalos/virologia , Cavalos , Humanos , Zoonoses/psicologia , Zoonoses/virologia
11.
Prev Vet Med ; 140: 67-77, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28460752

RESUMO

Hendra virus causes sporadic zoonotic disease in Australia following spill over from flying foxes to horses and from horses to people. Prevention and risk mitigation strategies such as vaccination of horses or biosecurity and property management measures are widely publicised, but hinge on initiative and action taken by horse owners as they mediate management, care and treatment of their animals. Hence, underlying beliefs, values and attitudes of horse owners influence their uptake of recommended risk mitigation measures. We used a qualitative approach to investigate attitudes, perceptions and self-reported practices of horse owners in response to Hendra virus to gain a deeper understanding of their decision-making around prevention measures. Data presented here derive from a series of in-depth interviews with 27 horse owners from Hendra virus 'hot spot' areas in New South Wales and Queensland. Interviews explored previous experience, perceptions and resulting behaviour as well as communication around Hendra virus. All interviews were recorded, transcribed verbatim and analysed in NVivo using thematic analysis. Analysis revealed four major themes: perception of Hendra virus as a risk and factors influencing this perception, Hendra virus risk mitigation strategies implemented by horse owners, perceived motivators and barriers of these strategies, and interaction of perceived risk, motivators and barriers in the decision-making process. Although Hendra virus disease was perceived as a serious threat to the health of horses and humans, individual risk perception diverged among horse owners. Perceived severity, likelihood and unpredictability as well as awareness and knowledge of Hendra virus, trust in information obtained and information pathways, demographic characteristics and personal experience were the main factors influencing Hendra virus risk perceptions. Other key determinants of horse owners' decision-making process were attitudes towards Hendra virus risk mitigation measures as well as perceived motivators and barriers thereof. Horse owners' awareness of the necessity to consider individual Hendra virus risk and adequate risk management strategies was described as a learning process, which changed over time. However, different perceptions of risk, barriers and motivators in combination with a weighing up of advantages and disadvantages resulted in different behaviours. These findings demonstrate the multifactorial determinants of cognitive mediating processes and facilitate a better understanding of horse owners' perspectives on preventive horse health measures. Furthermore, they provide valuable feedback to industry and government stakeholders on how to improve effective risk communication and encourage uptake of recommended risk mitigation measures.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Infecções por Henipavirus/veterinária , Doenças dos Cavalos/prevenção & controle , Doenças dos Cavalos/psicologia , Adulto , Idoso , Criação de Animais Domésticos , Animais , Austrália , Quirópteros/virologia , Tomada de Decisões , Feminino , Vírus Hendra , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/psicologia , Doenças dos Cavalos/virologia , Cavalos , Humanos , Entrevistas como Assunto , Masculino , Pessoa de Meia-Idade , New South Wales/epidemiologia , Queensland/epidemiologia , Fatores de Risco , Vacinação/psicologia , Adulto Jovem
12.
One Health ; 1: 24-30, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28616461

RESUMO

The urban presence of flying-foxes (pteropid bats) in eastern Australia has increased in the last 20 years, putatively reflecting broader landscape change. The influx of large numbers often precipitates community angst, typically stemming from concerns about loss of social amenity, economic loss or negative health impacts from recently emerged bat-mediated zoonotic diseases such as Hendra virus and Australian bat lyssavirus. Local authorities and state wildlife authorities are increasingly asked to approve the dispersal or modification of flying-fox roosts to address expressed concerns, yet the scale of this concern within the community, and the veracity of the basis for concern are often unclear. We conducted an on-line survey to capture community attitudes and opinions on flying-foxes in the urban environment to inform management policy and decision-making. Analysis focused on awareness, concerns, and management options, and primarily compared responses from communities where flying-fox management was and was not topical at the time of the survey. While a majority of respondents indicated a moderate to high level of knowledge of both flying-foxes and Hendra virus, a substantial minority mistakenly believed that flying-foxes pose a direct infection risk to humans, suggesting miscommunication or misinformation, and the need for additional risk communication strategies. Secondly, a minority of community members indicated they were directly impacted by urban roosts, most plausibly those living in close proximity to the roost, suggesting that targeted management options are warranted. Thirdly, neither dispersal nor culling was seen as an appropriate management strategy by the majority of respondents, including those from postcodes where flying-fox management was topical. These findings usefully inform community debate and policy development and demonstrate the value of social analysis in defining the issues and options in this complex human-wildlife interaction. The mobile nature of flying-foxes underlines the need for a management strategy at a regional or larger scale, and independent of state borders.

13.
PLoS One ; 10(5): e0125881, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26016629

RESUMO

Bats of the genus Pteropus (flying-foxes) are the natural host of Hendra virus (HeV) which periodically causes fatal disease in horses and humans in Australia. The increased urban presence of flying-foxes often provokes negative community sentiments because of reduced social amenity and concerns of HeV exposure risk, and has resulted in calls for the dispersal of urban flying-fox roosts. However, it has been hypothesised that disturbance of urban roosts may result in a stress-mediated increase in HeV infection in flying-foxes, and an increased spillover risk. We sought to examine the impact of roost modification and dispersal on HeV infection dynamics and cortisol concentration dynamics in flying-foxes. The data were analysed in generalised linear mixed models using restricted maximum likelihood (REML). The difference in mean HeV prevalence in samples collected before (4.9%), during (4.7%) and after (3.4%) roost disturbance was small and non-significant (P = 0.440). Similarly, the difference in mean urine specific gravity-corrected urinary cortisol concentrations was small and non-significant (before = 22.71 ng/mL, during = 27.17, after = 18.39) (P= 0.550). We did find an underlying association between cortisol concentration and season, and cortisol concentration and region, suggesting that other (plausibly biological or environmental) variables play a role in cortisol concentration dynamics. The effect of roost disturbance on cortisol concentration approached statistical significance for region, suggesting that the relationship is not fixed, and plausibly reflecting the nature and timing of disturbance. We also found a small positive statistical association between HeV excretion status and urinary cortisol concentration. Finally, we found that the level of flying-fox distress associated with roost disturbance reflected the nature and timing of the activity, highlighting the need for a 'best practice' approach to dispersal or roost modification activities. The findings usefully inform public discussion and policy development in relation to Hendra virus and flying-fox management.


Assuntos
Quirópteros/urina , Quirópteros/virologia , Vírus Hendra/isolamento & purificação , Animais , Austrália , Infecções por Henipavirus/epidemiologia , Hidrocortisona/urina , Estações do Ano
14.
PLoS One ; 10(12): e0144055, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26625128

RESUMO

Hendra virus (HeV) causes highly lethal disease in horses and humans in the eastern Australian states of Queensland (QLD) and New South Wales (NSW), with multiple equine cases now reported on an annual basis. Infection and excretion dynamics in pteropid bats (flying-foxes), the recognised natural reservoir, are incompletely understood. We sought to identify key spatial and temporal factors associated with excretion in flying-foxes over a 2300 km latitudinal gradient from northern QLD to southern NSW which encompassed all known equine case locations. The aim was to strengthen knowledge of Hendra virus ecology in flying-foxes to improve spillover risk prediction and exposure risk mitigation strategies, and thus better protect horses and humans. Monthly pooled urine samples were collected from under roosting flying-foxes over a three-year period and screened for HeV RNA by quantitative RT-PCR. A generalised linear model was employed to investigate spatiotemporal associations with HeV detection in 13,968 samples from 27 roosts. There was a non-linear relationship between mean HeV excretion prevalence and five latitudinal regions, with excretion moderate in northern and central QLD, highest in southern QLD/northern NSW, moderate in central NSW, and negligible in southern NSW. Highest HeV positivity occurred where black or spectacled flying-foxes were present; nil or very low positivity rates occurred in exclusive grey-headed flying-fox roosts. Similarly, little red flying-foxes are evidently not a significant source of virus, as their periodic extreme increase in numbers at some roosts was not associated with any concurrent increase in HeV detection. There was a consistent, strong winter seasonality to excretion in the southern QLD/northern NSW and central NSW regions. This new information allows risk management strategies to be refined and targeted, mindful of the potential for spatial risk profiles to shift over time with changes in flying-fox species distribution.


Assuntos
Quirópteros/virologia , Vírus Hendra/genética , Infecções por Henipavirus/virologia , Animais , New South Wales , Queensland , RNA Viral/genética , Estações do Ano
15.
PLoS One ; 10(10): e0140670, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26469523

RESUMO

Pteropid bats or flying-foxes (Chiroptera: Pteropodidae) are the natural host of Hendra virus (HeV) which sporadically causes fatal disease in horses and humans in eastern Australia. While there is strong evidence that urine is an important infectious medium that likely drives bat to bat transmission and bat to horse transmission, there is uncertainty about the relative importance of alternative routes of excretion such as nasal and oral secretions, and faeces. Identifying the potential routes of HeV excretion in flying-foxes is important to effectively mitigate equine exposure risk at the bat-horse interface, and in determining transmission rates in host-pathogen models. The aim of this study was to identify the major routes of HeV excretion in naturally infected flying-foxes, and secondarily, to identify between-species variation in excretion prevalence. A total of 2840 flying-foxes from three of the four Australian mainland species (Pteropus alecto, P. poliocephalus and P. scapulatus) were captured and sampled at multiple roost locations in the eastern states of Queensland and New South Wales between 2012 and 2014. A range of biological samples (urine and serum, and urogenital, nasal, oral and rectal swabs) were collected from anaesthetized bats, and tested for HeV RNA using a qRT-PCR assay targeting the M gene. Forty-two P. alecto (n = 1410) had HeV RNA detected in at least one sample, and yielded a total of 78 positive samples, at an overall detection rate of 1.76% across all samples tested in this species (78/4436). The rate of detection, and the amount of viral RNA, was highest in urine samples (>serum, packed haemocytes >faecal >nasal >oral), identifying urine as the most plausible source of infection for flying-foxes and for horses. Detection in a urine sample was more efficient than detection in urogenital swabs, identifying the former as the preferred diagnostic sample. The detection of HeV RNA in serum is consistent with haematogenous spread, and with hypothesised latency and recrudesence in flying-foxes. There were no detections in P. poliocephalus (n = 1168 animals; n = 2958 samples) or P. scapulatus (n = 262 animals; n = 985 samples), suggesting (consistent with other recent studies) that these species are epidemiologically less important than P. alecto in HeV infection dynamics. The study is unprecedented in terms of the individual animal approach, the large sample size, and the use of a molecular assay to directly determine infection status. These features provide a high level of confidence in the veracity of our findings, and a sound basis from which to more precisely target equine risk mitigation strategies.


Assuntos
Quirópteros/virologia , Vírus Hendra/isolamento & purificação , Infecções por Henipavirus/veterinária , Infecções por Henipavirus/virologia , Urina/virologia , Animais , Austrália , Quirópteros/classificação , Fezes/virologia , Feminino , Vírus Hendra/genética , Infecções por Henipavirus/transmissão , Doenças dos Cavalos/virologia , Cavalos , Masculino , Boca/virologia , Nariz/virologia , Reto/virologia , Soro/virologia , Especificidade da Espécie
16.
PLoS One ; 9(6): e99965, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24936789

RESUMO

Hendra virus causes sporadic but typically fatal infection in horses and humans in eastern Australia. Fruit-bats of the genus Pteropus (commonly known as flying-foxes) are the natural host of the virus, and the putative source of infection in horses; infected horses are the source of human infection. Effective treatment is lacking in both horses and humans, and notwithstanding the recent availability of a vaccine for horses, exposure risk mitigation remains an important infection control strategy. This study sought to inform risk mitigation by identifying spatial and environmental risk factors for equine infection using multiple analytical approaches to investigate the relationship between plausible variables and reported Hendra virus infection in horses. Spatial autocorrelation (Global Moran's I) showed significant clustering of equine cases at a distance of 40 km, a distance consistent with the foraging 'footprint' of a flying-fox roost, suggesting the latter as a biologically plausible basis for the clustering. Getis-Ord Gi* analysis identified multiple equine infection hot spots along the eastern Australia coast from far north Queensland to central New South Wales, with the largest extending for nearly 300 km from southern Queensland to northern New South Wales. Geographically weighted regression (GWR) showed the density of P. alecto and P. conspicillatus to have the strongest positive correlation with equine case locations, suggesting these species are more likely a source of infection of Hendra virus for horses than P. poliocephalus or P. scapulatus. The density of horses, climate variables and vegetation variables were not found to be a significant risk factors, but the residuals from the GWR suggest that additional unidentified risk factors exist at the property level. Further investigations and comparisons between case and control properties are needed to identify these local risk factors.


Assuntos
Quirópteros/virologia , Vírus Hendra , Infecções por Henipavirus/veterinária , Doenças dos Cavalos/virologia , Animais , Reservatórios de Doenças/virologia , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/transmissão , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/transmissão , Cavalos , New South Wales/epidemiologia , Queensland/epidemiologia , Fatores de Risco
17.
Vet Microbiol ; 173(3-4): 224-31, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25195190

RESUMO

In May 2013, the first cases of Australian bat lyssavirus infections in domestic animals were identified in Australia. Two horses (filly-H1 and gelding-H2) were infected with the Yellow-bellied sheathtail bat (YBST) variant of Australian bat lyssavirus (ABLV). The horses presented with neurological signs, pyrexia and progressing ataxia. Intra-cytoplasmic inclusion bodies (Negri bodies) were detected in some Purkinje neurons in haematoxylin and eosin (H&E) stained sections from the brain of one of the two infected horses (H2) by histological examination. A morphological diagnosis of sub-acute moderate non-suppurative, predominantly angiocentric, meningo-encephalomyelitis of viral aetiology was made. The presumptive diagnosis of ABLV infection was confirmed by the positive testing of the affected brain tissue from (H2) in a range of laboratory tests including fluorescent antibody test (FAT) and real-time PCR targeting the nucleocapsid (N) gene. Retrospective testing of the oral swab from (H1) in the real-time PCR also returned a positive result. The FAT and immunohistochemistry (IHC) revealed an abundance of ABLV antigen throughout the examined brain sections. ABLV was isolated from the brain (H2) and oral swab/saliva (H1) in the neuroblastoma cell line (MNA). Alignment of the genome sequence revealed a 97.7% identity with the YBST ABLV strain.


Assuntos
Encefalomielite Equina/virologia , Doenças dos Cavalos/patologia , Doenças dos Cavalos/virologia , Lyssavirus/genética , Meningite Viral/veterinária , Infecções por Rhabdoviridae/veterinária , Animais , Austrália , Sequência de Bases , Encefalomielite Equina/patologia , Imunofluorescência/veterinária , Cavalos , Imuno-Histoquímica/veterinária , Masculino , Meningite Viral/patologia , Dados de Sequência Molecular , Proteínas do Nucleocapsídeo/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Infecções por Rhabdoviridae/patologia , Alinhamento de Sequência/veterinária , Análise de Sequência de DNA/veterinária , Homologia de Sequência
18.
PLoS One ; 8(11): e80897, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260503

RESUMO

Hendra virus is a highly pathogenic novel paramyxovirus causing sporadic fatal infection in horses and humans in Australia. Species of fruit-bats (genus Pteropus), commonly known as flying-foxes, are the natural host of the virus. We undertook a survey of horse owners in the states of Queensland and New South Wales, Australia to assess the level of adoption of recommended risk management strategies and to identify impediments to adoption. Survey questionnaires were completed by 1431 respondents from the target states, and from a spectrum of industry sectors. Hendra virus knowledge varied with sector, but was generally limited, with only 13% of respondents rating their level of knowledge as high or very high. The majority of respondents (63%) had seen their state's Hendra virus information for horse owners, and a similar proportion found the information useful. Fifty-six percent of respondents thought it moderately, very or extremely likely that a Hendra virus case could occur in their area, yet only 37% said they would consider Hendra virus if their horse was sick. Only 13% of respondents stabled their horses overnight, although another 24% said it would be easy or very easy to do so, but hadn't done so. Only 13% and 15% of respondents respectively had horse feed bins and water points under solid cover. Responses varied significantly with state, likely reflecting different Hendra virus history. The survey identified inconsistent awareness and/or adoption of available knowledge, confusion in relation to Hendra virus risk perception, with both over-and under-estimation of true risk, and lag in the uptake of recommended risk minimisation strategies, even when these were readily implementable. However, we also identified frustration and potential alienation by horse owners who found the recommended strategies impractical, onerous and prohibitively expensive. The insights gained from this survey have broader application to other complex risk-management scenarios.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/veterinária , Rejeição em Psicologia , Adolescente , Adulto , Idoso , Animais , Quirópteros/virologia , Reservatórios de Doenças/virologia , Escolaridade , Feminino , Vírus Hendra/patogenicidade , Infecções por Henipavirus/diagnóstico , Infecções por Henipavirus/virologia , Cavalos/virologia , Humanos , Masculino , Pessoa de Meia-Idade , New South Wales , Queensland , Risco , Inquéritos e Questionários
19.
PLoS One ; 8(11): e80430, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312221

RESUMO

Zoonoses from wildlife threaten global public health. Hendra virus is one of several zoonotic viral diseases that have recently emerged from Pteropus species fruit-bats (flying-foxes). Most hypotheses regarding persistence of Hendra virus within flying-fox populations emphasize horizontal transmission within local populations (colonies) via urine and other secretions, and transmission among colonies via migration. As an alternative hypothesis, we explore the role of recrudescence in persistence of Hendra virus in flying-fox populations via computer simulation using a model that integrates published information on the ecology of flying-foxes, and the ecology and epidemiology of Hendra virus. Simulated infection patterns agree with infection patterns observed in the field and suggest that Hendra virus could be maintained in an isolated flying-fox population indefinitely via periodic recrudescence in a manner indistinguishable from maintenance via periodic immigration of infected individuals. Further, post-recrudescence pulses of infectious flying-foxes provide a plausible basis for the observed seasonal clustering of equine cases. Correct understanding of the infection dynamics of Hendra virus in flying-foxes is fundamental to effectively managing risk of infection in horses and humans. Given the lack of clear empirical evidence on how the virus is maintained within populations, the role of recrudescence merits increased attention.


Assuntos
Quirópteros/virologia , Infecções por Henipavirus/veterinária , Zoonoses/epidemiologia , Animais , Austrália , Meio Ambiente , Feminino , Vírus Hendra , Masculino , Modelos Teóricos , Dinâmica Populacional , Zoonoses/virologia
20.
Curr Opin Virol ; 1(6): 658-61, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22440924

RESUMO

The highly lethal Hendra and Nipah viruses have been described for little more than a decade, yet within that time have been aetiologically associated with major livestock and human health impacts, albeit on a limited scale. Do these emerging pathogens pose a broader threat, or are they inconsequential 'viral chatter'. Given their lethality, and the evident multi-generational human-to-human transmission associated with Nipah virus in Bangladesh, it seems prudent to apply the precautionary principle. While much is known of their clinical, pathogenic and epidemiologic features in livestock species and humans, a number of fundamental questions regarding the relationship between the viruses, their natural fruit-bat host and the environment remain unanswered. In this paper, we pose and probe these questions in context, and offer perspectives based primarily on our experience with Hendra virus in Australia, augmented with Nipah virus parallels.


Assuntos
Quirópteros/virologia , Surtos de Doenças/veterinária , Infecções por Henipavirus/transmissão , Henipavirus/crescimento & desenvolvimento , Zoonoses/virologia , Animais , Austrália , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/virologia , Humanos , Zoonoses/epidemiologia , Zoonoses/transmissão
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa