Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Control Release ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151830

RESUMO

In addition to the solubilization of poorly water-soluble, highly lipophilic drugs, lipid nanoemulsions bear potential for drug targeting approaches. This requires that the drug remains within the emulsion droplets until they reach the site of action. Since drug release is rather controlled by the lipophilicity of the drug than by the formulation, this study systematically investigated the influence of drug lipophilicity on the course of drug transfer in (physiological) acceptor media. An increase in drug lipophilicity, according to ClogD/P values, was achieved by the formation of lipophilic prodrugs of 5-phenylanthranilic acid - a potential pathoblocker. The range of substances was supplemented by orlistat, lumefantrine and cholesteryl acetate as model drugs. Drug transfer from supercooled trimyristin nanodroplets was determined via differential scanning calorimetry by monitoring their onset crystallization temperature, which decreases linearly with increasing drug content. Release of the model (pro)drugs ranged from burst to hardly any release in the order of the ClogD/P values. Except for cholesteryl acetate, the results were in line with the lipophilicity of the model (pro)drugs estimated by their retention times on a reversed-phase HPLC column under isocratic conditions. An approximate prediction of drug release kinetics was, thus, possible by logP calculations and, to a limited extent, also by reversed-phase HPLC. A further finding was the increased drug loading capacity of the lipid nanoemulsion for lipophilic prodrugs, if the structural changes of the parent compound were accompanied by a lower melting point.

2.
ChemMedChem ; : e202400466, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39163032

RESUMO

The phenazine pyocyanin is an important virulence factor of the pathogen Pseudomonas aeruginosa, which is on the WHO list of antibiotic resistant "priority pathogens". In this study the isomerase PhzF, a key bacterial enzyme of the pyocyanin biosynthetic pathway, was investigated as a pathoblocker target. The aim of the pathoblocker strategy is to reduce the virulence of the pathogen without killing it, thus preventing the rapid development of resistance. Based on crystal structures of PhzF, derivatives of the inhibitor 3-hydroxyanthranilic acid were designed. Co-crystal structures of the synthesized derivatives with PhzF revealed spacial limitations of the binding pocket of PhzF in the closed conformation. In contrast, ligands aligned to the open conformation of PhzF provided more room for structural modifications. The intrinsic fluorescence of small 3-hydroxyanthranilic acid derivatives enabled direct affinity determinations using FRET assays. The analysis of structure-activity relationships showed that the carboxylic acid moiety is essential for binding to the target enzyme. The results of this study provide fundamental structural insights that will be useful for the design of PhzF-inhibitors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa