Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 599(7884): 283-289, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34517409

RESUMO

Derailed cytokine and immune cell networks account for the organ damage and the clinical severity of COVID-19 (refs. 1-4). Here we show that SARS-CoV-2, like other viruses, evokes cellular senescence as a primary stress response in infected cells. Virus-induced senescence (VIS) is indistinguishable from other forms of cellular senescence and is accompanied by a senescence-associated secretory phenotype (SASP), which comprises pro-inflammatory cytokines, extracellular-matrix-active factors and pro-coagulatory mediators5-7. Patients with COVID-19 displayed markers of senescence in their airway mucosa in situ and increased serum levels of SASP factors. In vitro assays demonstrated macrophage activation with SASP-reminiscent secretion, complement lysis and SASP-amplifying secondary senescence of endothelial cells, which mirrored hallmark features of COVID-19 such as macrophage and neutrophil infiltration, endothelial damage and widespread thrombosis in affected lung tissue1,8,9. Moreover, supernatant from VIS cells, including SARS-CoV-2-induced senescence, induced neutrophil extracellular trap formation and activation of platelets and the clotting cascade. Senolytics such as navitoclax and a combination of dasatinib plus quercetin selectively eliminated VIS cells, mitigated COVID-19-reminiscent lung disease and reduced inflammation in SARS-CoV-2-infected hamsters and mice. Our findings mark VIS as a pathogenic trigger of COVID-19-related cytokine escalation and organ damage, and suggest that senolytic targeting of virus-infected cells is a treatment option against SARS-CoV-2 and perhaps other viral infections.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/patologia , COVID-19/virologia , Senescência Celular/efeitos dos fármacos , Terapia de Alvo Molecular , SARS-CoV-2/patogenicidade , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Animais , COVID-19/complicações , Linhagem Celular , Cricetinae , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Quercetina/farmacologia , Quercetina/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Trombose/complicações , Trombose/imunologia , Trombose/metabolismo
2.
Mol Cell ; 71(5): 675-688.e6, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30193095

RESUMO

Self-propagating, amyloidogenic mutant huntingtin (mHTT) aggregates may drive progression of Huntington's disease (HD). Here, we report the development of a FRET-based mHTT aggregate seeding (FRASE) assay that enables the quantification of mHTT seeding activity (HSA) in complex biosamples from HD patients and disease models. Application of the FRASE assay revealed HSA in brain homogenates of presymptomatic HD transgenic and knockin mice and its progressive increase with phenotypic changes, suggesting that HSA quantitatively tracks disease progression. Biochemical investigations of mouse brain homogenates demonstrated that small, rather than large, mHTT structures are responsible for the HSA measured in FRASE assays. Finally, we assessed the neurotoxicity of mHTT seeds in an inducible Drosophila model transgenic for HTTex1. We found a strong correlation between the HSA measured in adult neurons and the increased mortality of transgenic HD flies, indicating that FRASE assays detect disease-relevant, neurotoxic, mHTT structures with severe phenotypic consequences in vivo.


Assuntos
Biomarcadores/metabolismo , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Drosophila/genética , Drosophila/metabolismo , Feminino , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Mutação/genética , Neurônios/metabolismo , Neurônios/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
3.
Nature ; 571(7765): 429-433, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31292547

RESUMO

Balanced fusion and fission are key for the proper function and physiology of mitochondria1,2. Remodelling of the mitochondrial inner membrane is mediated by the dynamin-like protein mitochondrial genome maintenance 1 (Mgm1) in fungi or the related protein optic atrophy 1 (OPA1) in animals3-5. Mgm1 is required for the preservation of mitochondrial DNA in yeast6, whereas mutations in the OPA1 gene in humans are a common cause of autosomal dominant optic atrophy-a genetic disorder that affects the optic nerve7,8. Mgm1 and OPA1 are present in mitochondria as a membrane-integral long form and a short form that is soluble in the intermembrane space. Yeast strains that express temperature-sensitive mutants of Mgm19,10 or mammalian cells that lack OPA1 display fragmented mitochondria11,12, which suggests that Mgm1 and OPA1 have an important role in inner-membrane fusion. Consistently, only the mitochondrial outer membrane-not the inner membrane-fuses in the absence of functional Mgm113. Mgm1 and OPA1 have also been shown to maintain proper cristae architecture10,14; for example, OPA1 prevents the release of pro-apoptotic factors by tightening crista junctions15. Finally, the short form of OPA1 localizes to mitochondrial constriction sites, where it presumably promotes mitochondrial fission16. How Mgm1 and OPA1 perform their diverse functions in membrane fusion, scission and cristae organization is at present unknown. Here we present crystal and electron cryo-tomography structures of Mgm1 from Chaetomium thermophilum. Mgm1 consists of a GTPase (G) domain, a bundle signalling element domain, a stalk, and a paddle domain that contains a membrane-binding site. Biochemical and cell-based experiments demonstrate that the Mgm1 stalk mediates the assembly of bent tetramers into helical filaments. Electron cryo-tomography studies of Mgm1-decorated lipid tubes and fluorescence microscopy experiments on reconstituted membrane tubes indicate how the tetramers assemble on positively or negatively curved membranes. Our findings convey how Mgm1 and OPA1 filaments dynamically remodel the mitochondrial inner membrane.


Assuntos
Chaetomium/química , Microscopia Crioeletrônica , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas de Ligação ao GTP/química , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Cristalografia por Raios X , Proteínas Fúngicas/ultraestrutura , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/ultraestrutura , Galactosilceramidas/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/ultraestrutura , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica
4.
Development ; 148(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34751748

RESUMO

Although the role of the transcription factor NF-κB in intestinal inflammation and tumor formation has been investigated extensively, a physiological function of NF-κB in sustaining intestinal epithelial homeostasis beyond inflammation has not been demonstrated. Using NF-κB reporter mice, we detected strong NF-κB activity in Paneth cells, in '+4/+5' secretory progenitors and in scattered Lgr5+ crypt base columnar stem cells of small intestinal (SI) crypts. To examine NF-κB functions in SI epithelial self-renewal, mice or SI crypt organoids ('mini-guts') with ubiquitously suppressed NF-κB activity were used. We show that NF-κB activity is dispensable for maintaining SI epithelial proliferation, but is essential for ex vivo organoid growth. Furthermore, we demonstrate a dramatic reduction of Paneth cells in the absence of NF-κB activity, concomitant with a significant increase in goblet cells and immature intermediate cells. This indicates that NF-κB is required for proper Paneth versus goblet cell differentiation and for SI epithelial homeostasis, which occurs via regulation of Wnt signaling and Sox9 expression downstream of NF-κB. The current study thus presents evidence for an important role for NF-κB in intestinal epithelial self-renewal.


Assuntos
Células Caliciformes/citologia , Intestino Delgado/citologia , NF-kappa B/metabolismo , Celulas de Paneth/citologia , Animais , Diferenciação Celular , Autorrenovação Celular , Células Caliciformes/metabolismo , Homeostase , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Camundongos , NF-kappa B/genética , Organoides/citologia , Organoides/crescimento & desenvolvimento , Organoides/metabolismo , Celulas de Paneth/metabolismo , Fatores de Transcrição SOX9/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt
5.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34039707

RESUMO

Specified intestinal epithelial cells reprogram and contribute to the regeneration and renewal of the epithelium upon injury. Mutations that deregulate such renewal processes may contribute to tumorigenesis. Using intestinal organoids, we show that concomitant activation of Notch signaling and ablation of p53 induce a highly proliferative and regenerative cell state, which is associated with increased levels of Yap and the histone methyltransferase Mll1. The induced signaling system orchestrates high proliferation, self-renewal, and niche-factor-independent growth, and elevates the trimethylation of histone 3 at lysine 4 (H3K4me3). We demonstrate that Yap and Mll1 are also elevated in patient-derived colorectal cancer (CRC) organoids and control growth and viability. Our data suggest that Notch activation and p53 ablation induce a signaling circuitry involving Yap and the epigenetic regulator Mll1, which locks cells in a proliferative and regenerative state that renders them susceptible for tumorigenesis.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Histona-Lisina N-Metiltransferase/fisiologia , Proteína de Leucina Linfoide-Mieloide/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais , Fatores de Transcrição/fisiologia , Proteína Supressora de Tumor p53/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Mutação , Organoides/metabolismo , Fatores de Transcrição/metabolismo
6.
Glia ; 71(8): 2024-2044, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37140003

RESUMO

Astrocytes constitute the parenchymal border of the blood-brain barrier (BBB), modulate the exchange of soluble and cellular elements, and are essential for neuronal metabolic support. Thus, astrocytes critically influence neuronal network integrity. In hypoxia, astrocytes upregulate a transcriptional program that has been shown to boost neuroprotection in several models of neurological diseases. We investigated transgenic mice with astrocyte-specific activation of the hypoxia-response program by deleting the oxygen sensors, HIF prolyl-hydroxylase domains 2 and 3 (Phd2/3). We induced astrocytic Phd2/3 deletion after onset of clinical signs in experimental autoimmune encephalomyelitis (EAE) that led to an exacerbation of the disease mediated by massive immune cell infiltration. We found that Phd2/3-ko astrocytes, though expressing a neuroprotective signature, exhibited a gradual loss of gap-junctional Connexin-43 (Cx43), which was induced by vascular endothelial growth factor-alpha (Vegf-a) expression. These results provide mechanistic insights into astrocyte biology, their critical role in hypoxic states, and in chronic inflammatory CNS diseases.


Assuntos
Astrócitos , Encefalomielite Autoimune Experimental , Animais , Camundongos , Astrócitos/metabolismo , Doenças Neuroinflamatórias , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Prolil Hidroxilases/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
7.
Nature ; 545(7652): 98-102, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28445461

RESUMO

The relative contribution of the effector molecules produced by T cells to tumour rejection is unclear, but interferon-γ (IFNγ) is critical in most of the analysed models. Although IFNγ can impede tumour growth by acting directly on cancer cells, it must also act on the tumour stroma for effective rejection of large, established tumours. However, which stroma cells respond to IFNγ and by which mechanism IFNγ contributes to tumour rejection through stromal targeting have remained unknown. Here we use a model of IFNγ induction and an IFNγ-GFP fusion protein in large, vascularized tumours growing in mice that express the IFNγ receptor exclusively in defined cell types. Responsiveness to IFNγ by myeloid cells and other haematopoietic cells, including T cells or fibroblasts, was not sufficient for IFNγ-induced tumour regression, whereas responsiveness of endothelial cells to IFNγ was necessary and sufficient. Intravital microscopy revealed IFNγ-induced regression of the tumour vasculature, resulting in arrest of blood flow and subsequent collapse of tumours, similar to non-haemorrhagic necrosis in ischaemia and unlike haemorrhagic necrosis induced by tumour necrosis factor. The early events of IFNγ-induced tumour ischaemia resemble non-apoptotic blood vessel regression during development, wound healing or IFNγ-mediated, pregnancy-induced remodelling of uterine arteries. A better mechanistic understanding of how solid tumours are rejected may aid the design of more effective protocols for adoptive T-cell therapy.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Hipóxia Celular/imunologia , Interferon gama/imunologia , Isquemia/imunologia , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Remodelação Vascular , Animais , Vasos Sanguíneos/imunologia , Vasos Sanguíneos/metabolismo , Linhagem Celular Tumoral , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Feminino , Interferon gama/biossíntese , Microscopia Intravital , Isquemia/metabolismo , Isquemia/patologia , Masculino , Camundongos , Necrose , Neoplasias/metabolismo , Neoplasias/patologia , Receptores de Interferon/metabolismo , Células Estromais/imunologia , Células Estromais/metabolismo , Especificidade por Substrato , Cicatrização , Receptor de Interferon gama
8.
Proc Natl Acad Sci U S A ; 117(13): 7471-7481, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32170013

RESUMO

Eps15-homology domain containing protein 2 (EHD2) is a dynamin-related ATPase located at the neck of caveolae, but its physiological function has remained unclear. Here, we found that global genetic ablation of EHD2 in mice leads to increased lipid droplet size in fat tissue. This organismic phenotype was paralleled at the cellular level by increased fatty acid uptake via a caveolae- and CD36-dependent pathway that also involves dynamin. Concomitantly, elevated numbers of detached caveolae were found in brown and white adipose tissue lacking EHD2, and increased caveolar mobility in mouse embryonic fibroblasts. EHD2 expression itself was down-regulated in the visceral fat of two obese mouse models and obese patients. Our data suggest that EHD2 controls a cell-autonomous, caveolae-dependent fatty acid uptake pathway and imply that low EHD2 expression levels are linked to obesity.


Assuntos
Proteínas de Transporte/metabolismo , Cavéolas/metabolismo , Ácidos Graxos/metabolismo , Animais , Transporte Biológico , Membrana Celular/metabolismo , Células HeLa , Humanos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
Proc Natl Acad Sci U S A ; 114(22): 5629-5634, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28228524

RESUMO

Eps15 (epidermal growth factor receptor pathway substrate 15)-homology domain containing proteins (EHDs) comprise a family of dynamin-related mechano-chemical ATPases involved in cellular membrane trafficking. Previous studies have revealed the structure of the EHD2 dimer, but the molecular mechanisms of membrane recruitment and assembly have remained obscure. Here, we determined the crystal structure of an amino-terminally truncated EHD4 dimer. Compared with the EHD2 structure, the helical domains are 50° rotated relative to the GTPase domain. Using electron paramagnetic spin resonance (EPR), we show that this rotation aligns the two membrane-binding regions in the helical domain toward the lipid bilayer, allowing membrane interaction. A loop rearrangement in GTPase domain creates a new interface for oligomer formation. Our results suggest that the EHD4 structure represents the active EHD conformation, whereas the EHD2 structure is autoinhibited, and reveal a complex series of domain rearrangements accompanying activation. A comparison with other peripheral membrane proteins elucidates common and specific features of this activation mechanism.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos/genética , Linhagem Celular Tumoral , Cristalografia por Raios X , Ativação Enzimática/fisiologia , Células HeLa , Humanos , Ligação Proteica , Domínios Proteicos/fisiologia , Multimerização Proteica , Transporte Proteico/fisiologia
10.
J Neurosci Res ; 95(10): 1927-1936, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28493338

RESUMO

Studies on age-related gustatory function report a reduction of the taste function, but the degeneration of the peripheral papillae alone cannot explain this reduction. In the present study, we apply psychophysics and gustatory event-related potentials (gERPs) to explore age-related differences in the processing of gustatory information as indicated by the cerebral sources of the gERP. A total of 96 subjects (47 female), subdivided into four groups with increasing age, participated in the study. After olfactory and gustatory screening for normal function, the subjects were invited to two sessions of gERP acquisition. They received a randomized combination of five isointense basic tastants that were presented at a medium level. At the same time, we recorded scalp electroencephalography (EEG) from 128 scalp locations. Psychophysical testing for smell and taste function exhibited a significant decrease with age. Topographical analyses of the EEG delineated four basic topographical maps that explained the processing of taste in the pre-decline age range, with sources inside the relevant gustatory areas. The age-related change of gustatory processing was associated with the absence of a specific map with sources inside the cerebellum and posterior insula, and the temporal broadening of a map with sources in the bilateral inferior frontal gyrus. These results confirm the hypothesis that the reduction of taste function with aging is not only due to degradation of gustatory peripheral tissues but is also related to different neural signatures in the central nervous system.


Assuntos
Envelhecimento/patologia , Encéfalo/fisiopatologia , Percepção Gustatória/fisiologia , Adolescente , Adulto , Idoso , Eletroencefalografia , Potenciais Evocados/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Adulto Jovem
11.
Am J Physiol Cell Physiol ; 308(12): C1023-30, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25904680

RESUMO

The function of caveolae, small invaginations of the plasma membrane, remains a matter of debate. We discuss endocytosis and compartmentalization of metabolic and signaling pathways. Caveolin 3 (CAV3) and polymerase I and transcript release factor (PTRF) are important proteins that ensure shaping of caveolae in muscle cells. We investigated caveolae morphologically by electron microscopy in myotubes obtained from patients with CAV3 mutations and performed functional analyses in fibroblasts from a patient with a mutation in PTRF. Despite the complete clinical picture of a caveolinopathy, we found that caveolae in the CAV3-deficient myotubes were normal in shape and number. Furthermore, we found a difference in uptake of cholera toxin B between PTRF-deficient fibroblasts devoid of caveolae and normal fibroblasts. However, after caveolae were rescued by transfection of PTRF, cholera toxin B uptake did not normalize. We conclude that the presence of caveolae as an anatomic structure is not sufficient to ensure their proper function. Alternatively, the functional properties assigned to caveolae might be mediated by different mechanisms that have yet to be resolved.


Assuntos
Cavéolas/metabolismo , Fibroblastos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Estudos de Casos e Controles , Cavéolas/ultraestrutura , Caveolina 3/genética , Caveolina 3/metabolismo , Separação Celular/métodos , Células Cultivadas , Toxina da Cólera/metabolismo , Endocitose , Fibroblastos/ultraestrutura , Citometria de Fluxo , Regulação da Expressão Gênica , Genótipo , Humanos , Microscopia Eletrônica de Transmissão , Fibras Musculares Esqueléticas/ultraestrutura , Mutação , Fenótipo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Transfecção
12.
iScience ; 27(1): 108725, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38226160

RESUMO

Sorting receptor SORCS2 is a stress-response factor protecting neurons from acute insults, such as during epilepsy. SORCS2 is also expressed in the pancreas, yet its action in this tissue remains unknown. Combining metabolic studies in SORCS2-deficient mice with ex vivo functional analyses and single-cell transcriptomics of pancreatic tissues, we identified a role for SORCS2 in protective stress response in pancreatic islets, essential to sustain insulin release. We show that SORCS2 is predominantly expressed in islet alpha cells. Loss of expression coincides with inability of these cells to produce osteopontin, a secreted factor that facilitates insulin release from stressed beta cells. In line with diminished osteopontin levels, beta cells in SORCS2-deficient islets show gene expression patterns indicative of aggravated cell stress, and exhibit defects in insulin granule maturation and a blunted glucose response. These findings corroborate a function for SORCS2 in protective stress response that extends to metabolism.

13.
PLoS One ; 19(3): e0282938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512983

RESUMO

Previously, we found that Wnt and Notch signaling govern stem cells of clear cell kidney cancer (ccRCC) in patients. To mimic stem cell responses in the normal kidney in vitro in a marker-unbiased fashion, we have established tubular organoids (tubuloids) from total single adult mouse kidney epithelial cells in Matrigel and serum-free conditions. Deep proteomic and phosphoproteomic analyses revealed that tubuloids resembled renewal of adult kidney tubular epithelia, since tubuloid cells displayed activity of Wnt and Notch signaling, long-term proliferation and expression of markers of proximal and distal nephron lineages. In our wish to model stem cell-derived human ccRCC, we have generated two types of genetic double kidney mutants in mice: Wnt-ß-catenin-GOF together with Notch-GOF and Wnt-ß-catenin-GOF together with a most common alteration in ccRCC, Vhl-LOF. An inducible Pax8-rtTA-LC1-Cre was used to drive recombination specifically in adult kidney epithelial cells. We confirmed mutagenesis of ß-catenin, Notch and Vhl alleles on DNA, protein and mRNA target gene levels. Surprisingly, we observed symptoms of chronic kidney disease (CKD) in mutant mice, but no increased proliferation and tumorigenesis. Thus, the responses of kidney stem cells in the tubuloid and genetic systems produced different phenotypes, i.e. enhanced renewal versus CKD.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Insuficiência Renal Crônica , Adulto , Humanos , Camundongos , Animais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , beta Catenina/metabolismo , Proteômica , Células-Tronco/metabolismo , Insuficiência Renal Crônica/genética , Neoplasias Renais/genética , Neoplasias Renais/patologia
14.
Cancer Discov ; 14(3): 492-507, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197697

RESUMO

DNA amplifications in cancer do not only harbor oncogenes. We sought to determine whether passenger coamplifications could create collateral therapeutic vulnerabilities. Through an analysis of >3,000 cancer genomes followed by the interrogation of CRISPR-Cas9 loss-of-function screens across >700 cancer cell lines, we determined that passenger coamplifications are accompanied by distinct dependency profiles. In a proof-of-principle study, we demonstrate that the coamplification of the bona fide passenger gene DEAD-Box Helicase 1 (DDX1) creates an increased dependency on the mTOR pathway. Interaction proteomics identified tricarboxylic acid (TCA) cycle components as previously unrecognized DDX1 interaction partners. Live-cell metabolomics highlighted that this interaction could impair TCA activity, which in turn resulted in enhanced mTORC1 activity. Consequently, genetic and pharmacologic disruption of mTORC1 resulted in pronounced cell death in vitro and in vivo. Thus, structurally linked coamplification of a passenger gene and an oncogene can result in collateral vulnerabilities. SIGNIFICANCE: We demonstrate that coamplification of passenger genes, which were largely neglected in cancer biology in the past, can create distinct cancer dependencies. Because passenger coamplifications are frequent in cancer, this principle has the potential to expand target discovery in oncology. This article is featured in Selected Articles from This Issue, p. 384.


Assuntos
Neoplasias , Oncogenes , Humanos , Neoplasias/genética , Oncologia , Morte Celular , Alvo Mecanístico do Complexo 1 de Rapamicina/genética
15.
Hypertension ; 80(4): 771-782, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36715011

RESUMO

BACKGROUND: Glomerular hyperfiltration (GH) is an important mechanism in the development of albuminuria in hypertension. Upregulation of COX2 (cyclooxygenase 2) and prostaglandin E2 (PGE2) was linked to podocyte damage in GH. We explored the potential renoprotective effects of either separate or combined pharmacological blockade of EP2 (PGE2 receptor type 2) and EP4 (PGE2 receptor type 4) in GH. METHODS: We conducted in vivo studies in a transgenic zebrafish model (Tg[fabp10a:gc-EGFP]) suitable for analysis of glomerular filtration barrier function and a genetic rat model with GH, albuminuria, and upregulation of PGE2. Similar pharmacological interventions and primary outcome analysis on albuminuria phenotype development were conducted in both model systems. RESULTS: Stimulation of zebrafish embryos with PGE2 induced an albuminuria-like phenotype, thus mimicking the suggested PGE2 effects on glomerular filtration barrier dysfunction. Both separate and combined blockade of EP2 and EP4 reduced albuminuria phenotypes in zebrafish and rat models. A significant correlation between albuminuria and podocyte damage in electron microscopy imaging was identified in the rat model. Dual blockade of both receptors showed a pronounced synergistic suppression of albuminuria. Importantly, this occurred without changes in arterial blood pressure, glomerular filtration rate, or tissue oxygenation in magnetic resonance imaging, while RNA sequencing analysis implicated a potential role of circadian clock genes. CONCLUSIONS: Our findings confirm a role of PGE2 in the development of albuminuria in GH and support the renoprotective potential of combined pharmacological blockade of EP2 and EP4 receptors. These data support further translational research to explore this therapeutic option and a possible role of circadian clock genes.


Assuntos
Receptores de Prostaglandina E Subtipo EP2 , Peixe-Zebra , Animais , Ratos , Peixe-Zebra/metabolismo , Receptores de Prostaglandina E Subtipo EP2/genética , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Albuminúria , Dinoprostona , Receptores de Prostaglandina E Subtipo EP4/genética , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Proteínas de Transporte , Ciclo-Oxigenase 2/metabolismo
16.
Nat Commun ; 14(1): 8043, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114482

RESUMO

The complex neuromuscular network that controls body movements is the target of severe diseases that result in paralysis and death. Here, we report the development of a robust and efficient self-organizing neuromuscular junction (soNMJ) model from human pluripotent stem cells that can be maintained long-term in simple adherent conditions. The timely application of specific patterning signals instructs the simultaneous development and differentiation of position-specific brachial spinal neurons, skeletal muscles, and terminal Schwann cells. High-content imaging reveals self-organized bundles of aligned muscle fibers surrounded by innervating motor neurons that form functional neuromuscular junctions. Optogenetic activation and pharmacological interventions show that the spinal neurons actively instruct the synchronous skeletal muscle contraction. The generation of a soNMJ model from spinal muscular atrophy patient-specific iPSCs reveals that the number of NMJs and muscle contraction is severely affected, resembling the patient's pathology. In the future, the soNMJ model could be used for high-throughput studies in disease modeling and drug development. Thus, this model will allow us to address unmet needs in the neuromuscular disease field.


Assuntos
Células-Tronco Pluripotentes Induzidas , Atrofia Muscular Espinal , Humanos , Junção Neuromuscular/patologia , Neurônios Motores/fisiologia , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular Espinal/patologia , Músculo Esquelético/patologia , Células-Tronco Pluripotentes Induzidas/patologia
17.
Curr Biol ; 32(11): 2442-2453.e4, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35512696

RESUMO

From swimming to walking and flying, animals have evolved specific locomotor strategies to thrive in different habitats. All types of locomotion depend on the integration of motor commands and sensory information to generate precisely coordinated movements. Cerebrospinal-fluid-contacting neurons (CSF-cN) constitute a vertebrate sensory system that monitors CSF composition and flow. In fish, CSF-cN modulate swimming activity in response to changes in pH and bending of the spinal cord; however, their role in mammals remains unknown. We used mouse genetics to study their function in quadrupedal locomotion. We found that CSF-cN are directly integrated into spinal motor circuits. The perturbation of CSF-cN function does not affect general motor activity nor the generation of locomotor rhythm and pattern but results in specific defects in skilled movements. These results identify a role for mouse CSF-cN in adaptive motor control and indicate that this sensory system evolved a novel function to accommodate the biomechanical requirements of limb-based locomotion.


Assuntos
Células Receptoras Sensoriais , Peixe-Zebra , Animais , Locomoção , Mamíferos , Camundongos , Células Receptoras Sensoriais/fisiologia , Medula Espinal/fisiologia , Natação , Peixe-Zebra/fisiologia
18.
Mol Metab ; 64: 101563, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35944898

RESUMO

OBJECTIVE: Alterations in mitochondrial function play an important role in the development of various diseases, such as obesity, insulin resistance, steatohepatitis, atherosclerosis and cancer. However, accurate assessment of mitochondrial respiration ex vivo is limited and remains highly challenging. Using our novel method, we measured mitochondrial oxygen consumption (OCR) and extracellular acidification rate (ECAR) of metabolically relevant tissues ex vivo to investigate the impact of different metabolic stressors on mitochondrial function. METHODS: Comparative analyses of OCR and ECAR were performed in tissue biopsies of young mice fed 12 weeks standard-control (STD), high-fat (HFD), high-sucrose (HSD), or western diet (WD), matured mice with HFD, and 2year-old mice aged on STD with and without fasting. RESULTS: While diets had only marginal effects on mitochondrial respiration, respiratory chain complexes II and IV were reduced in adipose tissue (AT). Moreover, matured HFD-fed mice showed a decreased hepatic metabolic flexibility and prolonged aging increased OCR in brown AT. Interestingly, fasting boosted pancreatic and hepatic OCR while decreasing weight of those organs. Furthermore, ECAR measurements in AT could indicate its lipolytic capacity. CONCLUSION: Using ex vivo tissue measurements, we could extensively analyze mitochondrial function of liver, AT, pancreas and heart revealing effects of metabolic stress, especially aging.


Assuntos
Jejum , Infecções Sexualmente Transmissíveis , Tecido Adiposo Marrom , Envelhecimento , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Consumo de Oxigênio , Estresse Fisiológico
19.
Sci Adv ; 8(35): eabo4946, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36044574

RESUMO

Mitochondrial cristae membranes are the oxidative phosphorylation sites in cells. Crista junctions (CJs) form the highly curved neck regions of cristae and are thought to function as selective entry gates into the cristae space. Little is known about how CJs are generated and maintained. We show that the central coiled-coil (CC) domain of the mitochondrial contact site and cristae organizing system subunit Mic60 forms an elongated, bow tie-shaped tetrameric assembly. Mic19 promotes Mic60 tetramerization via a conserved interface between the Mic60 mitofilin and Mic19 CHCH (CC-helix-CC-helix) domains. Dimerization of mitofilin domains exposes a crescent-shaped membrane-binding site with convex curvature tailored to interact with the curved CJ neck. Our study suggests that the Mic60-Mic19 subcomplex traverses CJs as a molecular strut, thereby controlling CJ architecture and function.

20.
J Cachexia Sarcopenia Muscle ; 12(5): 1249-1265, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34212535

RESUMO

BACKGROUND: Aging is associated with a progressive reduction in cellular function leading to poor health and loss of physical performance. Mitochondrial dysfunction is one of the hallmarks of aging; hence, interventions targeting mitochondrial dysfunction have the potential to provide preventive and therapeutic benefits to elderly individuals. Meta-analyses of age-related gene expression profiles showed that the expression of Ahnak1, a protein regulating several signal-transduction pathways including metabolic homeostasis, is increased with age, which is associated with low VO2MAX and poor muscle fitness. However, the role of Ahnak1 in the aging process remained unknown. Here, we investigated the age-related role of Ahnak1 in murine exercise capacity, mitochondrial function, and contractile function of cardiac and skeletal muscles. METHODS: We employed 15- to 16-month-old female and male Ahnak1-knockout (Ahnak1-KO) and wild-type (WT) mice and performed morphometric, biochemical, and bioenergetics assays to evaluate the effects of Ahnak1 on exercise capacity and mitochondrial morphology and function in cardiomyocytes and tibialis anterior (TA) muscle. A human left ventricular (LV) cardiomyocyte cell line (AC16) was used to investigate the direct role of Ahnak1 in cardiomyocytes. RESULTS: We found that the level of Ahnak1 protein is significantly up-regulated with age in the murine LV (1.9-fold) and TA (1.8-fold) tissues. The suppression of Ahnak1 was associated with improved exercise tolerance, as all aged adult Ahnak1-KO mice (100%) successfully completed the running programme, whereas approximately 31% male and 8% female WT mice could maintain the required running speed and distance. Transmission electron microscopic studies showed that LV and TA tissue specimens of aged adult Ahnak1-KO of both sexes have significantly more enlarged/elongated mitochondria and less small mitochondria compared with WT littermates (P < 0.01 and P < 0.001, respectively) at basal level. Further, we observed a shift in mitochondrial fission/fusion balance towards fusion in cardiomyocytes and TA muscle from aged adult Ahnak1-KO mice. The maximal and reserve respiratory capacities were significantly higher in cardiomyocytes from aged adult Ahnak1-KO mice compared with the WT counterparts (P < 0.05 and P < 0.01, respectively). Cardiomyocyte contractility and fatigue resistance of TA muscles were significantly increased in Ahnak1-KO mice of both sexes, compared with the WT groups. In vitro studies using AC16 cells have confirmed that the alteration of mitochondrial function is indeed a direct effect of Ahnak1. Finally, we presented Ahnak1 as a novel cardiac mitochondrial membrane-associated protein. CONCLUSIONS: Our data suggest that Ahnak1 is involved in age-related cardiac and skeletal muscle dysfunction and could therefore serve as a promising therapeutical target.


Assuntos
Mitocôndrias , Músculo Esquelético , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Dinâmica Mitocondrial , Contração Muscular , Músculo Esquelético/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa