Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 616(7958): 836-842, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37020028

RESUMO

The origin recognition complex (ORC) is essential for initiation of eukaryotic chromosome replication as it loads the replicative helicase-the minichromosome maintenance (MCM) complex-at replication origins1. Replication origins display a stereotypic nucleosome organization with nucleosome depletion at ORC-binding sites and flanking arrays of regularly spaced nucleosomes2-4. However, how this nucleosome organization is established and whether this organization is required for replication remain unknown. Here, using genome-scale biochemical reconstitution with approximately 300 replication origins, we screened 17 purified chromatin factors from budding yeast and found that the ORC established nucleosome depletion over replication origins and flanking nucleosome arrays by orchestrating the chromatin remodellers INO80, ISW1a, ISW2 and Chd1. The functional importance of the nucleosome-organizing activity of the ORC was demonstrated by orc1 mutations that maintained classical MCM-loader activity but abrogated the array-generation activity of ORC. These mutations impaired replication through chromatin in vitro and were lethal in vivo. Our results establish that ORC, in addition to its canonical role as the MCM loader, has a second crucial function as a master regulator of nucleosome organization at the replication origin, a crucial prerequisite for efficient chromosome replication.


Assuntos
Cromatina , Complexo de Reconhecimento de Origem , Origem de Replicação , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Replicação do DNA , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Complexo de Reconhecimento de Origem/química , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Mol Cell ; 77(3): 488-500.e9, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31761495

RESUMO

Pioneer transcription factors (pTFs) bind to target sites within compact chromatin, initiating chromatin remodeling and controlling the recruitment of downstream factors. The mechanisms by which pTFs overcome the chromatin barrier are not well understood. Here, we reveal, using single-molecule fluorescence, how the yeast transcription factor Rap1 invades and remodels chromatin. Using a reconstituted chromatin system replicating yeast promoter architecture, we demonstrate that Rap1 can bind nucleosomal DNA within a chromatin fiber but with shortened dwell times compared to naked DNA. Moreover, we show that Rap1 binding opens chromatin fiber structure by inhibiting inter-nucleosome contacts. Finally, we reveal that Rap1 collaborates with the chromatin remodeler RSC to displace promoter nucleosomes, paving the way for long-lived bound states on newly exposed DNA. Together, our results provide a mechanistic view of how Rap1 gains access and opens chromatin, thereby establishing an active promoter architecture and controlling gene expression.


Assuntos
Cromatina/metabolismo , Nucleossomos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/metabolismo , Cromatina/genética , Montagem e Desmontagem da Cromatina , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/genética , Nucleossomos/metabolismo , Nucleossomos/fisiologia , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Fatores de Transcrição/genética
3.
PLoS Genet ; 20(8): e1011366, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39102423

RESUMO

In Saccharomyces cerevisiae, the forkhead (Fkh) transcription factor Fkh1 (forkhead homolog) enhances the activity of many DNA replication origins that act in early S-phase (early origins). Current models posit that Fkh1 acts directly to promote these origins' activity by binding to origin-adjacent Fkh1 binding sites (FKH sites). However, the post-DNA binding functions that Fkh1 uses to promote early origin activity are poorly understood. Fkh1 contains a conserved FHA (forkhead associated) domain, a protein-binding module with specificity for phosphothreonine (pT)-containing partner proteins. At a small subset of yeast origins, the Fkh1-FHA domain enhances the ORC (origin recognition complex)-origin binding step, the G1-phase event that initiates the origin cycle. However, the importance of the Fkh1-FHA domain to either chromosomal replication or ORC-origin interactions at genome scale is unclear. Here, S-phase SortSeq experiments were used to compare genome replication in proliferating FKH1 and fkh1-R80A mutant cells. The Fkh1-FHA domain promoted the activity of ≈ 100 origins that act in early to mid- S-phase, including the majority of centromere-associated origins, while simultaneously inhibiting ≈ 100 late origins. Thus, in the absence of a functional Fkh1-FHA domain, the temporal landscape of the yeast genome was flattened. Origins are associated with a positioned nucleosome array that frames a nucleosome depleted region (NDR) over the origin, and ORC-origin binding is necessary but not sufficient for this chromatin organization. To ask whether the Fkh1-FHA domain had an impact on this chromatin architecture at origins, ORC ChIPSeq data generated from proliferating cells and MNaseSeq data generated from G1-arrested and proliferating cell populations were assessed. Origin groups that were differentially regulated by the Fkh1-FHA domain were characterized by distinct effects of this domain on ORC-origin binding and G1-phase chromatin. Thus, the Fkh1-FHA domain controlled the distinct chromatin architecture at early origins in G1-phase and regulated origin activity in S-phase.


Assuntos
Cromatina , Replicação do DNA , Fase G1 , Complexo de Reconhecimento de Origem , Origem de Replicação , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Origem de Replicação/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicação do DNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromatina/genética , Cromatina/metabolismo , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Fase G1/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Fase S/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Domínios Proteicos/genética , Sítios de Ligação , Ligação Proteica , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Nucleossomos/metabolismo , Nucleossomos/genética
4.
Mol Cell ; 65(1): 117-130, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27989438

RESUMO

The integrity of eukaryotic genomes requires rapid and regulated chromatin replication. How this is accomplished is still poorly understood. Using purified yeast replication proteins and fully chromatinized templates, we have reconstituted this process in vitro. We show that chromatin enforces DNA replication origin specificity by preventing non-specific MCM helicase loading. Helicase activation occurs efficiently in the context of chromatin, but subsequent replisome progression requires the histone chaperone FACT (facilitates chromatin transcription). The FACT-associated Nhp6 protein, the nucleosome remodelers INO80 or ISW1A, and the lysine acetyltransferases Gcn5 and Esa1 each contribute separately to maximum DNA synthesis rates. Chromatin promotes the regular priming of lagging-strand DNA synthesis by facilitating DNA polymerase α function at replication forks. Finally, nucleosomes disrupted during replication are efficiently re-assembled into regular arrays on nascent DNA. Our work defines the minimum requirements for chromatin replication in vitro and shows how multiple chromatin factors might modulate replication fork rates in vivo.


Assuntos
Cromatina/genética , Replicação do DNA , DNA Fúngico/genética , Nucleossomos/genética , Origem de Replicação , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Cromatina/metabolismo , DNA Polimerase I/genética , DNA Polimerase I/metabolismo , DNA Fúngico/biossíntese , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas HMGN/genética , Proteínas HMGN/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Nucleossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
5.
Nucleic Acids Res ; 51(18): 9629-9642, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37650653

RESUMO

The use of synthetic chemicals to selectively interfere with chromatin and the chromatin-bound proteome represents a great opportunity for pharmacological intervention. Recently, synthetic foldamers that mimic the charge surface of double-stranded DNA have been shown to interfere with selected protein-DNA interactions. However, to better understand their pharmacological potential and to improve their specificity and selectivity, the effect of these molecules on complex chromatin needs to be investigated. We therefore systematically studied the influence of the DNA mimic foldamers on the chromatin-bound proteome using an in vitro chromatin assembly extract. Our studies show that the foldamer efficiently interferes with the chromatin-association of the origin recognition complex in vitro and in vivo, which leads to a disturbance of cell cycle in cells treated with foldamers. This effect is mediated by a strong direct interaction between the foldamers and the origin recognition complex and results in a failure of the complex to organise chromatin around replication origins. Foldamers that mimic double-stranded nucleic acids thus emerge as a powerful tool with designable features to alter chromatin assembly and selectively interfere with biological mechanisms.


Assuntos
Biomimética , Montagem e Desmontagem da Cromatina , Ciclo Celular , Cromatina , DNA , Replicação do DNA , Complexo de Reconhecimento de Origem/metabolismo , Proteoma , Animais , Drosophila , Embrião não Mamífero/química , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Proteínas Cromossômicas não Histona/metabolismo
6.
Nucleic Acids Res ; 50(3): 1317-1334, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35061899

RESUMO

Chromosome replication depends on efficient removal of nucleosomes by accessory factors to ensure rapid access to genomic information. Here, we show this process requires recruitment of the nucleosome reorganization activity of the histone chaperone FACT. Using single-molecule FRET, we demonstrate that reorganization of nucleosomal DNA by FACT requires coordinated engagement by the middle and C-terminal domains of Spt16 and Pob3 but does not require the N-terminus of Spt16. Using structure-guided pulldowns, we demonstrate instead that the N-terminal region is critical for recruitment by the fork protection complex subunit Tof1. Using in vitro chromatin replication assays, we confirm the importance of these interactions for robust replication. Our findings support a mechanism in which nucleosomes are removed through the coordinated engagement of multiple FACT domains positioned at the replication fork by the fork protection complex.


Assuntos
Nucleossomos , Proteínas de Saccharomyces cerevisiae , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Nucleossomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Elongação da Transcrição/genética
7.
Genes Dev ; 25(23): 2489-501, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22156209

RESUMO

The cell cycle-regulated expression of core histone genes is required for DNA replication and proper cell cycle progression in eukaryotic cells. Although some factors involved in histone gene transcription are known, the molecular mechanisms that ensure proper induction of histone gene expression during S phase remain enigmatic. Here we demonstrate that S-phase transcription of the model histone gene HTA1 in yeast is regulated by a novel attach-release mechanism involving phosphorylation of the conserved chromatin boundary protein Yta7 by both cyclin-dependent kinase 1 (Cdk1) and casein kinase 2 (CK2). Outside S phase, integrity of the AAA-ATPase domain is required for Yta7 boundary function, as defined by correct positioning of the histone chaperone Rtt106 and the chromatin remodeling complex RSC. Conversely, in S phase, Yta7 is hyperphosphorylated, causing its release from HTA1 chromatin and productive transcription. Most importantly, abrogation of Yta7 phosphorylation results in constitutive attachment of Yta7 to HTA1 chromatin, preventing efficient transcription post-recruitment of RNA polymerase II (RNAPII). Our study identified the chromatin boundary protein Yta7 as a key regulator that links S-phase kinases with RNAPII function at cell cycle-regulated histone gene promoters.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Histonas/genética , Fase S/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Proteínas Cromossômicas não Histona/genética , Histonas/metabolismo , Fosforilação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
Nat Methods ; 11(5): 585-92, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24658140

RESUMO

Cell signaling, one of key processes in both normal cellular function and disease, is coordinated by numerous interactions between membrane proteins that change in response to stimuli. We present a split ubiquitin-based method for detection of integral membrane protein-protein interactions (PPIs) in human cells, termed mammalian-membrane two-hybrid assay (MaMTH). We show that this technology detects stimulus (hormone or agonist)-dependent and phosphorylation-dependent PPIs. MaMTH can detect changes in PPIs conferred by mutations such as those in oncogenic ErbB receptor variants or by treatment with drugs such as the tyrosine kinase inhibitor erlotinib. Using MaMTH as a screening assay, we identified CRKII as an interactor of oncogenic EGFR(L858R) and showed that CRKII promotes persistent activation of aberrant signaling in non-small cell lung cancer cells. MaMTH is a powerful tool for investigating the dynamic interactomes of human integral membrane proteins.


Assuntos
Membrana Celular/metabolismo , Mapeamento de Interação de Proteínas/métodos , Técnicas do Sistema de Duplo-Híbrido , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Sobrevivência Celular , Citosol/metabolismo , Receptores ErbB/metabolismo , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pulmonares/metabolismo , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Mutação , Fosforilação , Fosfotirosina/química , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais , Biologia de Sistemas/métodos , Fatores de Transcrição/química , Ubiquitina/química
9.
Mol Cell ; 33(1): 53-63, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19150427

RESUMO

Triacylglycerols (TGs) serve essential cellular functions as reservoirs for energy substrates (fatty acids) and membrane lipid precursors (diacylglycerols and fatty acids). Here we show that the major yeast TG lipase Tgl4, the functional ortholog of murine adipose TG lipase ATGL, is phosphorylated and activated by cyclin-dependent kinase 1 (Cdk1/Cdc28). Phospho-Tgl4-catalyzed lipolysis contributes to early bud formation in late G1 phase of the cell cycle. Conversely, lack of lipolysis delays bud formation and cell-cycle progression. In the absence of beta-oxidation, lipolysis-derived metabolites are thus required to support cellular growth. TG homeostasis is the only metabolic process identified as yet that is directly regulated by Cdk1/Cdc28-dependent phosphorylation of key anabolic and catabolic enzymes, highlighting the importance of FA storage and mobilization during the cell cycle. Our data provide evidence for a direct link between cell-cycle-regulatory kinases and TG degradation and suggest a general mechanism for coordinating membrane synthesis with cell-cycle progression.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Lipase/metabolismo , Lipólise , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Ativação Enzimática , Ácidos Graxos/biossíntese , Fase G1 , Homeostase , Lipase/química , Lipídeos , Dados de Sequência Molecular , Fosforilação , Fosfosserina/metabolismo , Fosfotreonina/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Triglicerídeos/metabolismo
10.
Proc Natl Acad Sci U S A ; 111(39): 14124-9, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25228766

RESUMO

DNA replication occurs during the synthetic (S) phase of the eukaryotic cell cycle and features a dramatic induction of histone gene expression for concomitant chromatin assembly. Ectopic production of core histones outside of S phase is toxic, underscoring the critical importance of regulatory pathways that ensure proper expression of histone genes. Several regulators of histone gene expression in the budding yeast Saccharomyces cerevisiae are known, yet the key oscillator responsible for restricting gene expression to S phase has remained elusive. Here, we show that suppressor of Ty (Spt)10, a putative histone acetyltransferase, and its binding partner Spt21 are key determinants of S-phase-specific histone gene expression. We show that Spt21 abundance is restricted to S phase in part by anaphase promoting complex Cdc20-homologue 1 (APC(Cdh1)) and that it is recruited to histone gene promoters in S phase by Spt10. There, Spt21-Spt10 enables the recruitment of a cascade of regulators, including histone chaperones and the histone-acetyltransferase general control nonderepressible (Gcn) 5, which we hypothesize lead to histone acetylation and consequent transcription activation.


Assuntos
Histonas/genética , Histonas/metabolismo , Fase S/genética , Fase S/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilação , Ciclo Celular , Replicação do DNA/genética , DNA Fúngico/biossíntese , DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
11.
Cell Mol Life Sci ; 71(4): 599-613, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23974242

RESUMO

Histones are the primary protein component of chromatin, the mixture of DNA and proteins that packages the genetic material in eukaryotes. Large amounts of histones are required during the S phase of the cell cycle when genome replication occurs. However, ectopic expression of histones during other cell cycle phases is toxic; thus, histone expression is restricted to the S phase and is tightly regulated at multiple levels, including transcriptional, post-transcriptional, translational, and post-translational. In this review, we discuss mechanisms of regulation of histone gene expression with emphasis on the transcriptional regulation of the replication-dependent histone genes in the model yeast Saccharomyces cerevisiae.


Assuntos
Regulação Fúngica da Expressão Gênica , Histonas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Ativação Transcricional
12.
Eukaryot Cell ; 12(5): 654-64, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23457193

RESUMO

Rtt109 is a fungal histone acetyltransferase (HAT) that catalyzes histone H3 acetylation functionally associated with chromatin assembly. Rtt109-mediated H3 acetylation involves two histone chaperones, Asf1 and Vps75. In vivo, Rtt109 requires both chaperones for histone H3 lysine 9 acetylation (H3K9ac) but only Asf1 for full H3K56ac. In vitro, Rtt109-Vps75 catalyzes both H3K9ac and H3K56ac, whereas Rtt109-Asf1 catalyzes only H3K56ac. In this study, we extend the in vitro chaperone-associated substrate specificity of Rtt109 by showing that it acetylates vertebrate linker histone in the presence of Vps75 but not Asf1. In addition, we demonstrate that in Saccharomyces cerevisiae a short basic sequence at the carboxyl terminus of Rtt109 (Rtt109C) is required for H3K9ac in vivo. Furthermore, through in vitro and in vivo studies, we demonstrate that Rtt109C is required for optimal H3K56ac by the HAT in the presence of full-length Asf1. When Rtt109C is absent, Vps75 becomes important for H3K56ac by Rtt109 in vivo. In addition, we show that lysine 290 (K290) in Rtt109 is required in vivo for Vps75 to enhance the activity of the HAT. This is the first in vivo evidence for a role for Vps75 in H3K56ac. Taken together, our results contribute to a better understanding of chaperone control of Rtt109-mediated H3 acetylation.


Assuntos
Histona Acetiltransferases/fisiologia , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Acetilação , Sequência de Aminoácidos , Animais , Proteínas Aviárias/química , Domínio Catalítico , Proteínas de Ciclo Celular/química , Galinhas , Técnicas de Inativação de Genes , Histona Acetiltransferases/química , Histonas/química , Lisina/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
bioRxiv ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38405780

RESUMO

In Saccharomyces cerevisiae, the forkhead (Fkh) transcription factor Fkh1 (forkhead homolog) enhances the activity of many DNA replication origins that act in early S-phase (early origins). Current models posit that Fkh1 acts directly to promote these origins' activity by binding to origin-adjacent Fkh1 binding sites (FKH sites). However, the post-DNA binding functions that Fkh1 uses to promote early origin activity are poorly understood. Fkh1 contains a conserved FHA (forkhead associated) domain, a protein-binding module with specificity for phosphothreonine (pT)-containing partner proteins. At a small subset of yeast origins, the Fkh1-FHA domain enhances the ORC (origin recognition complex)-origin binding step, the G1-phase event that initiates the origin cycle. However, the importance of the Fkh1-FHA domain to either chromosomal replication or ORC-origin interactions at genome scale is unclear. Here, S-phase SortSeq experiments were used to compare genome replication in proliferating FKH1 and fkh1-R80A mutant cells. The Fkh1-FHA domain promoted the activity of 100 origins that act in early to mid- S-phase, including the majority of centromere-associated origins, while simultaneously inhibiting 100 late origins. Thus, in the absence of a functional Fkh1-FHA domain, the temporal landscape of the yeast genome was flattened. Origins are associated with a positioned nucleosome array that frames a nucleosome depleted region (NDR) over the origin, and ORC-origin binding is necessary but not sufficient for this chromatin organization. To ask whether the Fkh1-FHA domain had an impact on this chromatin architecture at origins, ORC ChIPSeq data generated from proliferating cells and MNaseSeq data generated from G1-arrested and proliferating cell populations were assessed. Origin groups that were differentially regulated by the Fkh1-FHA domain were characterized by distinct effects of this domain on ORC-origin binding and G1-phase chromatin. Thus, the Fkh1-FHA domain controlled the distinct chromatin architecture at early origins in G1-phase and regulated origin activity in S-phase.

14.
Life Sci Alliance ; 6(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37468166

RESUMO

Fun30 is the prototype of the Fun30-SMARCAD1-ETL subfamily of nucleosome remodelers involved in DNA repair and gene silencing. These proteins appear to act as single-subunit nucleosome remodelers, but their molecular mechanisms are, at this point, poorly understood. Using multiple sequence alignment and structure prediction, we identify an evolutionarily conserved domain that is modeled to contain a SAM-like fold with one long, protruding helix, which we term SAM-key. Deletion of the SAM-key within budding yeast Fun30 leads to a defect in DNA repair and gene silencing similar to that of the fun30Δ mutant. In vitro, Fun30 protein lacking the SAM-key is able to bind nucleosomes but is deficient in DNA-stimulated ATPase activity and nucleosome sliding and eviction. A structural model based on AlphaFold2 prediction and verified by crosslinking-MS indicates an interaction of the long SAM-key helix with protrusion I, a subdomain located between the two ATPase lobes that is critical for control of enzymatic activity. Mutation of the interaction interface phenocopies the domain deletion with a lack of DNA-stimulated ATPase activation and a nucleosome-remodeling defect, thereby confirming a role of the SAM-key helix in regulating ATPase activity. Our data thereby demonstrate a central role of the SAM-key domain in mediating the activation of Fun30 catalytic activity, thus highlighting the importance of allosteric activation for this class of enzymes.


Assuntos
Nucleossomos , Proteínas de Saccharomyces cerevisiae , Nucleossomos/genética , Nucleossomos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo
15.
Mol Cell Oncol ; 9(1): 2039577, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308047

RESUMO

We have recently revealed the existence of a cell cycle-regulated chromatin segregase, Yta7 (Yeast Tat-binding Analog 7), involved in chromosome replication. Phosphorylation of Yta7 by S-CDK (S-phase Cyclin-Dependent Kinase) regulates its function. These findings link the cell cycle to chromatin biology and suggest how chromatin-modifying enzymes become S phase-specific.

16.
Nat Commun ; 12(1): 5224, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471130

RESUMO

The replication of chromosomes during S phase is critical for cellular and organismal function. Replicative stress can result in genome instability, which is a major driver of cancer. Yet how chromatin is made accessible during eukaryotic DNA synthesis is poorly understood. Here, we report the characterization of a chromatin remodeling enzyme-Yta7-entirely distinct from classical SNF2-ATPase family remodelers. Yta7 is a AAA+ -ATPase that assembles into ~1 MDa hexameric complexes capable of segregating histones from DNA. The Yta7 chromatin segregase promotes chromosome replication both in vivo and in vitro. Biochemical reconstitution experiments using purified proteins revealed that the enzymatic activity of Yta7 is regulated by S phase-forms of Cyclin-Dependent Kinase (S-CDK). S-CDK phosphorylation stimulates ATP hydrolysis by Yta7, promoting nucleosome disassembly and chromatin replication. Our results present a mechanism for how cells orchestrate chromatin dynamics in co-ordination with the cell cycle machinery to promote genome duplication during S phase.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Replicação do DNA/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Pontos de Checagem do Ciclo Celular , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/genética , DNA/metabolismo , Histonas/metabolismo , Humanos , Fosforilação , Fase S , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição
17.
J Biol Chem ; 284(45): 30981-93, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-19608739

RESUMO

Storage triacylglycerols (TAG) and membrane phospholipids share common precursors, i.e. phosphatidic acid and diacylglycerol, in the endoplasmic reticulum. In addition to providing a biophysically rather inert storage pool for fatty acids, TAG synthesis plays an important role to buffer excess fatty acids (FA). The inability to incorporate exogenous oleic acid into TAG in a yeast mutant lacking the acyltransferases Lro1p, Dga1p, Are1p, and Are2p contributing to TAG synthesis results in dysregulation of lipid synthesis, massive proliferation of intracellular membranes, and ultimately cell death. Carboxypeptidase Y trafficking from the endoplasmic reticulum to the vacuole is severely impaired, but the unfolded protein response is only moderately up-regulated, and dispensable for membrane proliferation, upon exposure to oleic acid. FA-induced toxicity is specific to oleic acid and much less pronounced with palmitoleic acid and is not detectable with the saturated fatty acids, palmitic and stearic acid. Palmitic acid supplementation partially suppresses oleic acid-induced lipotoxicity and restores carboxypeptidase Y trafficking to the vacuole. These data show the following: (i) FA uptake is not regulated by the cellular lipid requirements; (ii) TAG synthesis functions as a crucial intracellular buffer for detoxifying excess unsaturated fatty acids; (iii) membrane lipid synthesis and proliferation are responsive to and controlled by a balanced fatty acid composition.


Assuntos
Homeostase , Membranas Intracelulares/metabolismo , Saccharomyces cerevisiae/metabolismo , Triglicerídeos/biossíntese , Retículo Endoplasmático/metabolismo , Ácidos Graxos/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
G3 (Bethesda) ; 8(6): 1993-2006, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29661843

RESUMO

The Hif1 protein in the yeast Saccharomyces cerevisie is an evolutionarily conserved H3/H4-specific chaperone and a subunit of the nuclear Hat1 complex that catalyzes the acetylation of newly synthesized histone H4. Hif1, as well as its human homolog NASP, has been implicated in an array of chromatin-related processes including histone H3/H4 transport, chromatin assembly and DNA repair. In this study, we elucidate the functional aspects of Hif1 Initially we establish the wide distribution of Hif1 homologs with an evolutionarily conserved pattern of four tetratricopeptide repeats (TPR) motifs throughout the major fungal lineages and beyond. Subsequently, through targeted mutational analysis, we demonstrate that the acidic region that interrupts the TPR2 is essential for Hif1 physical interactions with the Hat1/Hat2-complex, Asf1, and with histones H3/H4. Furthermore, we provide evidence for the involvement of Hif1 in regulation of histone metabolism by showing that cells lacking HIF1 are both sensitive to histone H3 over expression, as well as synthetic lethal with a deletion of histone mRNA regulator LSM1 We also show that a basic patch present at the extreme C-terminus of Hif1 is essential for its proper nuclear localization. Finally, we describe a physical interaction with a transcriptional regulatory protein Spt2, possibly linking Hif1 and the Hat1 complex to transcription-associated chromatin reassembly. Taken together, our results provide novel mechanistic insights into Hif1 functions and establish it as an important protein in chromatin-associated processes.


Assuntos
Chaperonas de Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Sequência Conservada , Técnicas de Inativação de Genes , Chaperonas de Histonas/química , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Mutação/genética , Filogenia , Ligação Proteica , Domínios Proteicos , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/química
19.
Science ; 353(6306)2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27708008

RESUMO

We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing more than 23 million double mutants, identifying about 550,000 negative and about 350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell.


Assuntos
Redes Reguladoras de Genes , Genes Fúngicos/fisiologia , Pleiotropia Genética/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Epistasia Genética , Genes Essenciais
20.
Science ; 337(6100): 1353-6, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22984072

RESUMO

The dimorphic switch from a single-cell budding yeast to a filamentous form enables Saccharomyces cerevisiae to forage for nutrients and the opportunistic pathogen Candida albicans to invade human tissues and evade the immune system. We constructed a genome-wide set of targeted deletion alleles and introduced them into a filamentous S. cerevisiae strain, Σ1278b. We identified genes involved in morphologically distinct forms of filamentation: haploid invasive growth, biofilm formation, and diploid pseudohyphal growth. Unique genes appear to underlie each program, but we also found core genes with general roles in filamentous growth, including MFG1 (YDL233w), whose product binds two morphogenetic transcription factors, Flo8 and Mss11, and functions as a critical transcriptional regulator of filamentous growth in both S. cerevisiae and C. albicans.


Assuntos
Candida albicans/crescimento & desenvolvimento , Candida albicans/genética , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Alelos , Biofilmes/crescimento & desenvolvimento , Candida albicans/citologia , Análise Mutacional de DNA , Deleção de Genes , Hifas/genética , Hifas/crescimento & desenvolvimento , Proteínas Nucleares/genética , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética , Fatores de Transcrição/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa