Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Biol Pharm Bull ; 47(5): 967-977, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38763751

RESUMO

Ensitrelvir is a noncovalent inhibitor of the main protease (Mpro) of severe acute respiratory syndrome coronavirus 2. Acquisition of drug resistance in virus-derived proteins is a serious therapeutic concern, and drug resistance occurs due to amino acid mutations. In this study, we computationally constructed 24 mutants, in which one residue around the active site was replaced with alanine and performed molecular dynamics simulations to the complex of Mpro and ensitrelvir to predict the residues involved in drug resistance. We evaluated the changes in the entire protein structure and ligand configuration in each of these mutants and estimated which residues were involved in ensitrelvir recognition. This method is called a virtual alanine scan. In nine mutants (S1A, T26A, H41A, M49A, L141A, H163A, E166A, V186A, and R188A), although the entire protein structure and catalytic dyad (cysteine (Cys)145 and histidine (His)41) were not significantly moved, the ensitrelvir configuration changed. Thus, it is considered that these mutants did not recognize ensitrelvir while maintaining Mpro enzymatic activities, and Ser1, Thr26, His41, Met49, Leu141, His163, Glu166, Val186, and Arg188 may be related to ensitrelvir resistance. The ligand shift noted in M49A was similar to that observed in M49I, which has been shown to be experimentally ensitrelvir resistant. These findings suggest that our research approach can predict mutations that incite drug resistance.


Assuntos
Alanina , Domínio Catalítico , Proteases 3C de Coronavírus , Farmacorresistência Viral , Simulação de Dinâmica Molecular , SARS-CoV-2 , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/genética , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , SARS-CoV-2/efeitos dos fármacos , Alanina/genética , Farmacorresistência Viral/genética , Humanos , Mutação , Tratamento Farmacológico da COVID-19 , Inibidores de Proteases/farmacologia , Indazóis , Triazinas , Triazóis
2.
Biol Pharm Bull ; 47(3): 620-628, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38479886

RESUMO

One of the members of CYP, a monooxygenase, CYP2A13 is involved in the metabolism of nicotine, coumarin, and tobacco-specific nitrosamine. Genetic polymorphisms have been identified in CYP2A13, with reported loss or reduction in enzymatic activity in CYP2A13 allelic variants. This study aimed to unravel the mechanism underlying the diminished enzymatic activity of CYP2A13 variants by investigating their three-dimensional structures through molecular dynamics (MD) simulations. For each variant, MD simulations of 1000 ns were performed, and the obtained results were compared with those of the wild type. The findings indicated alterations in the interaction with heme in CYP2A13.4, .6, .8, and .9. In the case of CYP2A13.5, observable effects on the helix structure related to the interaction with the redox partner were identified. These conformational changes were sufficient to cause a decrease in enzyme activity in the variants. Our findings provide valuable insights into the molecular mechanisms associated with the diminished activity in the CYP2A13 polymorphisms.


Assuntos
Simulação de Dinâmica Molecular , Nitrosaminas , Polimorfismo Genético , Nicotina , Oxirredução , Citocromo P-450 CYP2A6/genética
3.
Biochemistry ; 62(11): 1679-1688, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37155656

RESUMO

Crystallin aggregation in the eye lens is involved in the pathogenesis of cataracts. The aggregation is considered to be promoted by non-enzymatic post-translational modifications, such as the deamidation and stereoinversion of amino acid residues. Although in a previous study, the deamidated asparagine residues were detected in γS-crystallin in vivo, it is unclear which deamidated residues have the most impact on the aggregation under physiological conditions. In this study, we investigated the deamidation impacts of all Asn residues in γS-crystallin for the structural and aggregation properties utilizing deamidation mimetic mutants (N14D, N37D, N53D, N76D, and N143D). The structural impacts were investigated using circular dichroism analysis and molecular dynamics simulations, and the aggregation properties were analyzed by gel filtration chromatography and spectrophotometric methods. No significant structural impacts of all mutations were detected. However, the N37D mutation decreased thermal stability and changed some intermolecular hydrogen-bond formations. Aggregation analysis indicated that the superiority of the aggregation rate in each mutant varied with temperature. Deamidation at any Asn residues promoted γS-crystallin aggregation, and the deamidation at Asn37, Asn53, and Asn76 were suggested to be the most impactful in the formation of insoluble aggregations.


Assuntos
Catarata , Cristalino , gama-Cristalinas , Humanos , Asparagina/química , gama-Cristalinas/química , Mutação , Catarata/metabolismo , Cristalino/metabolismo
4.
Biol Pharm Bull ; 44(7): 967-975, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34193692

RESUMO

Isomerized aspartic acid (Asp) residues have previously been identified in various aging tissues, and are suspected to contribute to age-related diseases. Asp-residue isomerization occurs nonenzymatically under physiological conditions, resulting in the formation of three types of isomerized Asp (i.e., L-isoAsp, D-Asp, and D-isoAsp) residues. Asp-residue isomerization often accelerates protein aggregation and insolubilization, making structural biology analyses difficult. Recently, Sakaue et al. reported the synthesis of a ribonuclease A (RNase A) in which Asp121 was artificially replaced with different isomerized Asp residues, and experimentally demonstrated that the enzymatic activities of these artificial mutants were completely lost. However, their structural features have not yet been elucidated. In the present study, the three-dimensional (3D) structures of these artificial-mutant RNases A were predicted using molecular dynamics (MD) simulations. The 3D structures of wild-type and artificial-mutant RNases A were converged by 3000-ns MD simulations. Our computational data show that the structures of the active site and the formation frequencies of the appropriate catalytic dyad structures in the artificial-mutant RNases A were quite different from wild-type RNase A. These computational findings may provide an explanation for the experimental data which show that artificial-mutant RNases A lack enzymatic activity. Herein, MD simulations have been used to evaluate the influences of isomerized Asp residues on the 3D structures of proteins.


Assuntos
Ácido Aspártico/química , Ribonuclease Pancreático/química , Animais , Domínio Catalítico , Bovinos , Isomerismo , Simulação de Dinâmica Molecular , Mutação , Ribonuclease Pancreático/genética
5.
Int J Mol Sci ; 22(18)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34576002

RESUMO

Recently, inhibitors of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) have been proposed as potential therapeutic agents for COVID-19. Studying effects of amino acid mutations in the conformation of drug targets is necessary for anticipating drug resistance. In this study, with the structure of the SARS-CoV-2 Mpro complexed with a non-covalent inhibitor, we performed molecular dynamics (MD) simulations to determine the conformation of the complex when single amino acid residue in the active site is mutated. As a model of amino acid mutation, we constructed mutant proteins with one residue in the active site mutated to alanine. This method is called virtual alanine scan. The results of the MD simulations showed that the conformation and configuration of the ligand was changed for mutants H163A and E166A, although the structure of the whole protein and of the catalytic dyad did not change significantly, suggesting that mutations in His163 and Glu166 may be linked to drug resistance.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , SARS-CoV-2 , Alanina , Substituição de Aminoácidos , COVID-19/enzimologia , COVID-19/genética , Domínio Catalítico/genética , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/genética , Humanos , SARS-CoV-2/enzimologia , SARS-CoV-2/genética
6.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419172

RESUMO

Aspartic acid (Asp) residues are prone to nonenzymatic isomerization via a succinimide (Suc) intermediate. The formation of isomerized Asp residues is considered to be associated with various age-related diseases, such as cataracts and Alzheimer's disease. In the present paper, we describe the reaction pathway of Suc residue formation from Asp residues catalyzed by two water molecules using the B3LYP/6-31+G(d,p) level of theory. Single-point energies were calculated using the MP2/6-311+G(d,p) level of theory. For these calculations, we used a model compound in which an Asp residue was capped with acetyl and methylamino groups on the N- and C-termini, respectively. In the aqueous phase, Suc residue formation from an Asp residue was roughly divided into three steps, namely, iminolization, cyclization, and dehydration, with the activation energy estimated to be 109 kJ mol-1. Some optimized geometries and reaction modes in the aqueous phase were observed that differed from those in the gas phase.


Assuntos
Ácido Aspártico/química , Ciclização , Modelos Químicos , Succinimidas/química , Água/química , Catálise , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo
7.
Int J Mol Sci ; 22(18)2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34576282

RESUMO

Cytochrome P450 (CYP) 2A6 is a monooxygenase involved in the metabolism of various endogenous and exogenous chemicals, such as nicotine and therapeutic drugs. The genetic polymorphisms in CYP2A6 are a cause of individual variation in smoking behavior and drug toxicities. The enzymatic activities of the allelic variants of CYP2A6 were analyzed in previous studies. However, the three-dimensional structures of the mutants were not investigated, and the mechanisms underlying activity reduction remain unknown. In this study, to investigate the structural changes involved in the reduction in enzymatic activities, we performed molecular dynamics simulations for ten allelic mutants of CYP2A6. For the calculated wild type structure, no significant structural changes were observed in comparison with the experimental structure. On the other hand, the mutations affected the interaction with heme, substrates, and the redox partner. In CYP2A6.44, a structural change in the substrate access channel was also observed. Those structural effects could explain the alteration of enzymatic activity caused by the mutations. The results of simulations provide useful information regarding the relationship between genotype and phenotype.


Assuntos
Citocromo P-450 CYP2A6/química , Citocromo P-450 CYP2A6/genética , Simulação de Dinâmica Molecular , Polimorfismo Genético , Sequência de Aminoácidos , Heme/metabolismo , Humanos , Ligação de Hidrogênio , Cinética , Proteínas Mutantes/química , Oxirredução , Estrutura Secundária de Proteína , Especificidade por Substrato
8.
Biol Pharm Bull ; 43(12): 1931-1939, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33268711

RESUMO

Androgen receptor (AR) has a key role in the development and progression of prostate cancer, and AR antagonists are used for its remedy. Recently, carborane derivatives, which are carbon-containing boron clusters have attracted attention as new AR ligands. Here we determined the force field parameters of 10-vertex and 12-vertex p-carborane to facilitate in silico drug design of boron clusters. Then, molecular dynamics (MD) simulations of complexes of AR-carborane derivatives were performed to evaluate the parameters and investigate the influences of carborane derivatives on the three-dimensional structure of AR. Energy profiles were obtained using quantum chemical calculations, and the force-field parameters were determined by curve fitting of the energy profiles. The results of MD simulations indicated that binding of the antagonist-BA341 changed some hydrogen-bond formations involved in the structure and location of helix 12. Those results were consistent with previously reported data. The determined parameters are also useful for refining the structure of the carborane-receptor complex obtained by docking simulations and development of new ligands with carborane cages not only for AR but also for various receptors.


Assuntos
Antagonistas de Receptores de Andrógenos/química , Compostos de Boro/química , Sistemas de Liberação de Medicamentos/métodos , Simulação de Dinâmica Molecular , Receptores Androgênicos/química , Antagonistas de Receptores de Andrógenos/administração & dosagem , Antagonistas de Receptores de Andrógenos/metabolismo , Compostos de Boro/administração & dosagem , Compostos de Boro/metabolismo , Estrutura Secundária de Proteína , Receptores Androgênicos/metabolismo , Relação Estrutura-Atividade
9.
Int J Mol Sci ; 21(19)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987875

RESUMO

Deamidation of asparagine (Asn) residues is a nonenzymatic post-translational modification of proteins. Asn deamidation is associated with pathogenesis of age-related diseases and hypofunction of monoclonal antibodies. Deamidation rate is known to be affected by the residue following Asn on the carboxyl side and by secondary structure. Information about main-chain conformation of Asn residues is necessary to accurately predict deamidation rate. In this study, the effect of main-chain conformation of Asn residues on deamidation rate was computationally investigated using molecular dynamics (MD) simulations and quantum chemical calculations. The results of MD simulations for γS-crystallin suggested that frequently deamidated Asn residues have common main-chain conformations on the N-terminal side. Based on the simulated structure, initial structures for the quantum chemical calculations were constructed and optimized geometries were obtained using the B3LYP density functional method. Structures that were frequently deamidated had a lower activation energy barrier than that of the little deamidated structure. We also showed that dihydrogen phosphate and bicarbonate ions are important catalysts for deamidation of Asn residues.


Assuntos
Asparagina/química , Processamento de Proteína Pós-Traducional , gama-Cristalinas/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Secundária de Proteína , gama-Cristalinas/metabolismo
10.
Int J Mol Sci ; 20(10)2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096657

RESUMO

Aspartic acid (Asp) residues are prone to non-enzymatic stereoinversion, and Asp-residue stereoinversion is believed to be mediated via a succinimide (SI) intermediate. The stereoinverted Asp residues are believed to cause several age-related diseases. However, in peptides and proteins, few studies have reported the stereoinversion of glutamic acid (Glu) residues whose structures are similar to that of Asp. We previously presumed that Glu-residue stereoinversion proceeds via a glutarimide (GI) intermediate and showed that the calculated activation barriers of SI- and GI-intermediate stereoinversion are almost equivalent in the gas phase. In this study, we investigated the stereoinversion pathways of the l-GI intermediate in the aqueous phase using B3LYP density functional methods. The calculated activation barrier of l-GI-intermediate stereoinversion in the aqueous phase was approximately 36 kcal·mol-1, which was much higher than that in the gas phase. Additionally, as this activation barrier exceeded that of Asp-residue stereoinversion, it is presumed that Glu-residue stereoinversion has a lower probability of proceeding under physiological conditions than Asp-residue stereoinversion.


Assuntos
Ácido Aspártico/química , Resistência a Medicamentos , Ácido Glutâmico/química , Piperidonas/química , Estereoisomerismo , Água/química , Catálise , Estrutura Molecular , Peptídeos/química , Proteínas/química , Succinimidas/química
11.
Int J Mol Sci ; 20(9)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067643

RESUMO

The 26S proteasome is critical for the selective degradation of proteins in eukaryotic cells. This enzyme complex is composed of approximately 70 subunits, including the structurally homologous proteins α1-α7, which combine to form heptameric rings. The correct arrangement of these α subunits is essential for the function of the proteasome, but their assembly does not occur autonomously. Assembly of the α subunit is assisted by several chaperones, including the PAC3-PAC4 heterodimer. In this study we showed that the PAC3-PAC4 heterodimer functions as a molecular matchmaker, stabilizing the α4-α5-α6 subcomplex during the assembly of the α-ring. We solved a 0.96-Å atomic resolution crystal structure for a PAC3 homodimer which, in conjunction with nuclear magnetic resonance (NMR) data, highlighted the mobility of the loop comprised of residues 51 to 61. Based on these structural and dynamic data, we created a three-dimensional model of the PAC3-4/α4/α5/α6 quintet complex, and used this model to investigate the molecular and structural basis of the mechanism of proteasome α subunit assembly, as mediated by the PAC3-PAC4 heterodimeric chaperone. Our results provide a potential basis for the development of selective inhibitors against proteasome biogenesis.


Assuntos
Chaperonas Moleculares/química , Simulação de Acoplamento Molecular , Complexo de Endopeptidases do Proteassoma/química , Multimerização Proteica , Humanos , Chaperonas Moleculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
12.
Int J Mol Sci ; 20(9)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075988

RESUMO

Eukaryotic proteasomes harbor heteroheptameric α-rings, each composed of seven different but homologous subunits α1-α7, which are correctly assembled via interactions with assembly chaperones. The human proteasome α7 subunit is reportedly spontaneously assembled into a homotetradecameric double ring, which can be disassembled into single rings via interaction with monomeric α6. We comprehensively characterized the oligomeric state of human proteasome α subunits and demonstrated that only the α7 subunit exhibits this unique, self-assembling property and that not only α6 but also α4 can disrupt the α7 double ring. We also demonstrated that mutationally monomerized α7 subunits can interact with the intrinsically monomeric α4 and α6 subunits, thereby forming heterotetradecameric complexes with a double-ring structure. The results of this study provide additional insights into the mechanisms underlying the assembly and disassembly of proteasomal subunits, thereby offering clues for the design and creation of circularly assembled hetero-oligomers based on homo-oligomeric structural frameworks.


Assuntos
Mutação/genética , Complexo de Endopeptidases do Proteassoma/genética , Subunidades Proteicas/genética , Humanos , Proteínas Mutantes/química , Multimerização Proteica
13.
Biochim Biophys Acta Proteins Proteom ; 1866(7): 783-788, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29331333

RESUMO

Recently, non-enzymatic stereoinversions of aspartic acid (Asp) residues in proteins and peptides have been reported. Here, we performed replica exchange molecular dynamics (REMD) simulations of model peptides (exon 6, 26A-1, and 26A-2) extracted from elastin to investigate their structural features, thereby revealing the factor that influences stereoinversions. For REMD trajectories, we calculated distances between carboxyl carbon in Asp and amide nitrogen in the (n + 1) residue (CN distances). Because bond formation between carbon and nitrogen is indispensable to the formation of a succinimide intermediate the distance between them seems to play an important role in stereoinversion. Moreover, we calculated polar surface areas (PSAs) for the trajectories, finding that CN distances and PSA were different for each peptide, with the longest CN distance and smallest PSA observed for exon 6 peptide, where stereoinversion of Asp is the slowest. Although the average CN distance was shorter for exon 26A-1 peptide than for exon 26A-2 peptide, the number of conformations with CN distances <3.0 Šwas greater for exon 26A-2 peptide than for exon 26A-1 peptide. Furthermore, PSA for amide nitrogen of the (n + 1) residue was larger for exon 26A-2 peptide than for exon 26A-1 peptide. These results indicated that the flexibility of Asp and (n + 1) residues and hydrophilicity of peptides, especially in the (n + 1) residue, play important roles in the stereoinversion of Asp. This article is part of a Special Issue entitled: D-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca.


Assuntos
Ácido Aspártico/química , Peptídeos/química , Isomerismo , Conformação Proteica
14.
Biochim Biophys Acta Proteins Proteom ; 1866(7): 759-766, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29305913

RESUMO

The l-α-Asp residues in peptides or proteins are prone to undergo nonenzymatic reactions to form l-ß-Asp, d-α-Asp, and d-ß-Asp residues via a succinimide five-membered ring intermediate. From these three types of isomerized aspartic acid residues, particularly d-ß-Asp has been widely detected in aging tissue. In this study, we computationally investigated the cyclization of α- and ß-Asp residues to form succinimide with dihydrogen phosphate ion as a catalyst (H2PO4-). We performed the study using B3LYP/6-31+G(d,p) density functional theory calculations. The comparison of the activation barriers of both residues is discussed. All the calculations were performed using model compounds in which an α/ß-Asp-Gly sequence is capped with acetyl and methylamino groups on the N- and C-termini, respectively. Moreover, H2PO4- catalyzes all the steps of the succinimide formation (cyclization-dehydration) acting as a proton-relay mediator. The calculated activation energy barriers for succinimide formation of α- and ß-Asp residues are 26.9 and 26.0kcalmol-1, respectively. Although it was experimentally confirmed that ß-Asp has higher stability than α-Asp, there was no clear difference between the activation barriers. Therefore, the higher stability of ß-Asp residue than α-Asp residue may be caused by an entropic effect associated with the succinimide formation.


Assuntos
Ácido Aspártico/química , Succinimidas/química , Ciclização , Entropia
15.
Chirality ; 30(5): 527-535, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29528512

RESUMO

In contrast with the common belief that all the amino acid residues in higher organisms are l-forms, d-amino acid residues have been recently detected in various aging tissues. Aspartic acid (Asp) residues are known to be the most prone to stereoinvert via cyclic imide intermediate. Although the glutamic acid (Glu) is similar in chemical structure to Asp, little has been reported to detect d-Glu residues in human proteins. In this study, we investigated the mechanism of the Glu-residue stereoinversion catalyzed by water molecules using B3LYP/6-31+G(d,p) density functional theory calculations. We propose that the Glu-residue stereoinversion proceeds via a cyclic imide intermediate, i.e., glutarimide (GI). All calculations were performed by using a model compound in which a Glu residue was capped with acetyl and methylamino groups on the N- and C-termini, respectively. We found that two water molecules catalyze the three steps involved in the GI formation: iminolization, cyclization, and dehydration. The activation energy required for the Glu residue to form a GI intermediate was estimated to be 32.3 kcal mol-1 , which was higher than that of the experimental Asp-residue stereoinversion. This calculation result suggests that the Glu-residue stereoinversion is not favored under the physiological condition.


Assuntos
Ácido Glutâmico/química , Proteínas/química , Amidas/química , Catálise , Ciclização , Peptídeos/química , Estereoisomerismo , Água
16.
Chirality ; 30(4): 332-341, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29393985

RESUMO

Recently, stereoinversions and isomerizations of amino acid residues in the proteins of living beings have been observed. Because isomerized amino acids cause structural changes and denaturation of proteins, isomerizations of amino acid residues are suspected to cause age-related diseases. In this study, AMBER molecular force field parameters were tested by using computationally generated nonapeptides and tripeptides including stereoinverted and/or isomerized amino acid residues. Energy calculations by using density functional theory were also performed for comparison. Although the force field parameters were developed by parameter fitting for l-α-amino acids, the accuracy of the computational results for d-amino acids and ß-amino acids was comparable to those for l-α-amino acids. The conformational energies for tripeptides calculated by using density functional theory were reproduced more accurately than those for nonapeptides calculated by using the molecular mechanical force field. The evaluations were performed for the ff99SB, ff03, ff12SB, and the latest ff14SB force field parameters.


Assuntos
Aminoácidos/química , Peptídeos/química , Ácido Aspártico/química , Isomerismo , Simulação de Dinâmica Molecular , Estereoisomerismo
17.
Molecules ; 22(10)2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29023395

RESUMO

Although various higher-order protein structure prediction methods have been developed, almost all of them were developed based on the three-dimensional (3D) structure information of known proteins. Here we predicted the short protein structures by molecular dynamics (MD) simulations in which only Newton's equations of motion were used and 3D structural information of known proteins was not required. To evaluate the ability of MD simulationto predict protein structures, we calculated seven short test protein (10-46 residues) in the denatured state and compared their predicted and experimental structures. The predicted structure for Trp-cage (20 residues) was close to the experimental structure by 200-ns MD simulation. For proteins shorter or longer than Trp-cage, root-mean square deviation values were larger than those for Trp-cage. However, secondary structures could be reproduced by MD simulations for proteins with 10-34 residues. Simulations by replica exchange MD were performed, but the results were similar to those from normal MD simulations. These results suggest that normal MD simulations can roughly predict short protein structures and 200-ns simulations are frequently sufficient for estimating the secondary structures of protein (approximately 20 residues). Structural prediction method using only fundamental physical laws are useful for investigating non-natural proteins, such as primitive proteins and artificial proteins for peptide-based drug delivery systems.


Assuntos
Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas/química , Modelos Moleculares , Peso Molecular , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
18.
EMBO Rep ; 13(5): 462-8, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22430200

RESUMO

HOIL-1L and its binding partner HOIP are essential components of the E3-ligase complex that generates linear ubiquitin (Ub) chains, which are critical regulators of NF-κB activation. Using crystallographic and mutational approaches, we characterize the unexpected structural basis for the specific interaction between the Ub-like domain (UBL) of HOIL-1L and the Ub-associated domain (UBA) of HOIP. Our data indicate the functional significance of this non-canonical mode of UBA-UBL interaction in E3 complex formation and subsequent NF-κB activation. This study highlights the versatility and specificity of protein-protein interactions involving Ub/UBLs and their cognate proteins.


Assuntos
Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Linhagem Celular , Dicroísmo Circular , Humanos , Imunoprecipitação , Espectroscopia de Ressonância Magnética , NF-kappa B/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Ressonância de Plasmônio de Superfície , Fatores de Transcrição , Ultracentrifugação
19.
J Phys Chem B ; 128(20): 4952-4958, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38728588

RESUMO

The Maillard reaction is one of the nonenzymatic post-translational modifications of proteins. Products of this reaction are considered to be related to aging diseases and the sensation of taste. In the initial stage of the Maillard reaction, Schiff base formation first occurs by the nucleophilic attack of amine nitrogen in proteins, and then, the reaction proceeds through the formation of 1,2-eminal and Amadori compounds. In this study, we computationally investigated the reaction pathway of Schiff base formation from hexoses. The optimized geometries of energy minima and transition states were calculated by using the density functional theory with the CAM-B3LYP/6-311+G(2d,2p) level of theory. The Schiff base formation progressed through three steps: two steps of carbinolamine formation and one step of dehydration. The dehydration is considered to be the rate-determining step in all hexoses because the activation barrier of the dehydration was higher than that of the carbinolamine formation. Furthermore, the steric configuration of the OH group at positions 2 and 3 affected the activation barrier.

20.
Biochem Biophys Res Commun ; 432(1): 141-5, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23376067

RESUMO

A major form of proteasome activator PA28 is a heteroheptamer composed of interferon-γ-inducible α and ß subunits, which share approximately 50% amino acid identity and possess distinct insert loops. This activator forms a complex with the 20S proteasome and thereby stimulates proteasomal degradation of peptides in an ATP-independent manner, giving rise to smaller antigenic peptides presented by major histocompatibility complex class I molecules. In this study, we performed biophysical and biochemical characterization of the structure and function of the PA28 hetero-oligomer. Deuteration-assisted small-angle neutron scattering demonstrated three α and four ß subunits are alternately arranged in the heptameric ring. In this arrangement, PA28 loops surround the central pore of the heptameric ring (site for peptide entry). Activating the 20S proteasome with a PA28 mutant that lacked the α subunit loops cleaved model substrates longer than a nonapeptide with better efficiency when compared to wild-type PA28. Based on these data, we hypothesize that the flexible PA28 loops act as gatekeepers, which function to select the length of peptide substrates to be transported between the proteolytic chamber and the extra-proteasomal medium.


Assuntos
Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Camundongos , Peptídeos/química , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteólise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa